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ABSTRACT 

This thesis presents new techniques for planning and robustly controlling the motion 

of nonlinear underactuated vehicles when disturbances are present and only imperfect 

state measurements are available for feedback. The basic motion planning algorithm uses 

cubic splines or Pythagorean hodograph curves to connect the initial and final configura- 

tions and to generate a feasible trajectory for the system. The feasible trajectory and its 

control inputs are improved through an iterative i7°°-filter. Techniques are demonstrated 

for generalizing the motion planning algorithm to address the obstacle avoidance, multi- 

ple vehicle, and minimum distance planning problems. To track a desired trajectory, first 

a state feedback control law is developed for the linearized system using an ür°°-optimal 

design. The state feedback controller produces a locally exponentially stable closed-loop 

system and guarantees a precomputable level of disturbance attenuation for the system. 

Subsequently, an imperfect state measurement feedback controller is developed by com- 

bining a state estimate with the state feedback control law. The state estimator exploits 

a unique structure in the nonlinear equations of motion to decompose the system into 

two interlaced subsystems, which leads to a direct solution. The estimator is actually 

an i?°°-nlter, and under it the controller achieves a modified form of disturbance at- 

tenuation. Simulations included in the thesis illustrate the motion planning, the state 

feedback control, and the imperfect state measurement control algorithms derived, for 

selected models of nonlinear underactuated vehicles. 
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CHAPTER 1 

INTRODUCTION 

The primary objective of this thesis research has been to undertake a comprehensive 

study of motion planning and tracking control issues that arise in the context of non- 

linear underactuated vehicles. Motion planning involves the development of a feasible 

trajectory by fully accounting for the underactuated structure of the vehicle. Tracking 

control involves the design of controllers that use noisy partial state measurements to 

generate inputs that make the vehicle track the feasible trajectory. Usually, underac- 

tuated vehicles require manual planning and a skilled operator to perform even basic 

maneuvers. Automating these tasks will allow us to sever the link between the vehicle 

and the operator, which can lead to improved performance and expand the range of 

applications for the vehicle. Before we can cut this vehicle-operator link, however, we 

must overcome the significant design challenges that arise when we merge nonlinearities 

and underactuation into a single problem. The well established techniques for planning 

motions and controlling linear fully actuated systems are inadequate for nonlinear under- 

actuated vehicles. Solving this design problem requires us to fully understand the limits 

of the current techniques and then advance the theory to develop practical solutions. 

This study has addressed this challenge, and obtained novel motion planning algorithms 

and feedback tracking control laws using the framework and tools of H°° control and 

filtering. When combined, these new algorithms allow us to guide the underactuated 

vehicle between two configurations during a specified time interval. The H°° techniques 



provide a way to directly calculate practical solutions that are robust to the disturbances 

the vehicle will likely encounter. 

This first chapter will present a detailed description of the basic problem we will be 

addressing and provide motivation for considering this area of study. We will also describe 

the original contributions we have made with this research. The chapter concludes with 

a description of the model of an underactuated vehicle that we will use to demonstrate 

the new motion planning and control techniques. 

1.1    Problem Description 

The vehicles of interest in this project display four attributes that make the motion 

planning and control problems challenging. The attributes are that (i) the vehicles are 

underactuated, (ii) the equations of motion are nonlinear, (iii) there are unknown distur- 

bances entering the equations of motion, and (iv) the state of the system is only available 

through noisy partial state measurements. Individually, these factors can be difficult to 

handle, so their combination in a single design problem presents a formidable task. Each 

of these design challenges merits a brief explanation. 

An underactuated system is defined to be one where the dimension of the space 

spanned by the control vector is less than the dimension of the configuration space [1]. 

Simply stated, this refers to a mechanical system that has fewer control inputs than 

degrees of freedom. An equivalent characterization of an underactuated system is that 

it has nonintegrable acceleration relations or dynamics [2]. Another common description 

for an underactuated system is that it has second-order nonholonomic constraints. First- 

order nonholonomic constraints refer to restrictions on the velocities of the system, while 

second-order nonholonomic constraints restrict the accelerations of the system. The ex- 

ample underactuated vehicle we will focus on is a ship moving on a planar surface that 



has a forward acceleration input from the propeller thrust and a pure angular acceleration 

input from the rudder. There is no lateral acceleration input for the ship, which makes 

the sideways motion the underactuated dimension. Other examples of underactuated 

vehicles include spacecraft, battle-damaged aircraft, hovercraft, and missiles. 

In addition to being underactuated, the vehicles studied in this thesis will have non- 

linear equations of motion. Nonlinear systems present their own set of design challenges 

if we want to plan a set of motions and control the vehicle to follow a specific trajectory. 

The standard tools used to control nonlinear systems, including feedback linearization 

and integrator backstepping, do not provide direct solutions for the underactuated sys- 

tems we will consider, so new techniques must be developed. The new techniques to be 

presented in this thesis involve #°°-optimal control design methods and will exploit a 

unique decomposition of the equations of motion that greatly simplifies the analysis. 

The third factor in the problem that contributes to the design challenge is the presence 

of disturbances in the equations of motion. For the control design we will adopt a 

game-theoretic approach to splve the i7°°-optimal control problem. Accordingly, we will 

consider the disturbances as an input to the system selected by an adversary who is trying 

to disrupt the motion of vehicle as much as possible. Our objective will be to develop 

a feedback control law that minimizes the maximum negative effect the adversary can 

have. The result will be a control law that attenuates the effect of the disturbances on the 

motion of the vehicle and allows it to track a desired trajectory. This minimax approach 

to control design has documented solutions for both linear and nonlinear systems. The 

solution for nonlinear systems is expressed in terms of a partial differential equation, 

which, in general, does not admit a closed-form solution. To develop a closed-form 

solution, we will linearize the vehicle's equations of motion about a desired trajectory to 

find the optimal control inputs. 



The final design challenge in this thesis is the imperfect state measurement restriction 

on the control law. In this case, imperfect state measurement means that we can measure 

only some of the states in the system and there are unknown disturbances entering the 

measurements. The solution to the ür°°-optimal control problem for the imperfect state 

measurement case is well known and can be computed directly for linear systems. For 

nonlinear systems, the solution involves two partial differential equations, which usually 

cannot be solved explicitly. Our approach will use the structure of the underactuated 

vehicle model to reduce the nonlinear problem to a pair of simpler subproblems. We will 

demonstrate that we can build on the established results for linear systems to achieve a 

form of disturbance attenuation for the nonlinear underactuated vehicle. 

With the four primary elements of the system in place, we can now make a formal 

statement of the problems this research effort will address. We assume we are given an 

accurate, time-invariant model of an underactuated vehicle that we want to control. In 

addition, we are given the initial and final configurations between which we want to move 

the vehicle, and a time interval for completing the task. Our first objective is to develop a 

motion planning algorithm to design a feasible trajectory for the underactuated vehicle to 

move from one configuration to another during the specified time interval. The outcome 

of the motion planning algorithm will be a set of time-varying control inputs that can 

be applied to a model of the underactuated vehicle to generate a desired trajectory. 

The planning algorithm will focus on finding a direct method for computing the control 

inputs as opposed to an exhaustive search technique. The second objective is to create 

a controller design technique that causes an underactuated vehicle to track the desired 

trajectory while also attenuating the effect of disturbances. The control law will be 

restricted to use only imperfect state measurements. The control design problem can be 

subdivided into two parts. The first part will be to design a state feedback controller 

for the nonlinear underactuated system assuming perfect state information is available 



to the controller. The second part will be to modify the state feedback controller to 

account for the imperfect state measurement restriction. For both the motion planning 

and the control aspects of the problem, we want to exploit the known dynamics of the 

underactuated vehicle to develop natural motions for the system to achieve the objectives. 

We note that the motion planning and control aspects of the problem can be com- 

pletely decoupled and addressed separately, but we will attempt to plan motions that 

make the tracking control problem easier to solve. We also observe that the motion plan- 

ning algorithm yields a feasible desired trajectory that the underactuated vehicle could 

track if it had the proper initial conditions and there were no disturbances present. The 

control law developed here is valuable because it will recover from initial condition errors 

and successfully track the desired trajectory even in the presence of disturbances. 

To formulate a meaningful and realistic thesis research project, there should be lim- 

itations on the scope of the research to make the problem manageable. We used the 

following limitations as guidelines to provide a structure for this research. To keep the 

research focused, we did not address three areas of control theory that may be relevant to 

the problem. First, we did not use adaptive methods as a primary technique for vehicle 

motion control. Adaptive control offers advantages when the true nature of the system is 

unknown or is changing over time and system parameters need to be identified. Our re- 

search assumed we had a well-defined vehicle moving with known properties. The second 

area of research we excluded was biologically inspired controller design, which includes 

neural networks, fuzzy logic, and genetic algorithms. These methods offer valid controller 

design techniques which are suitable for some nonlinear systems, but we avoided these 

approaches because they do not always offer good insight into the nature of the controller 

and make it difficult to precisely describe the contributions to control theory. Finally, 

the research did not focus on the stochastic nature of the problem. There are certainly 

many aspects of vehicle motion control that could be characterized in probabilistic terms, 



but we will not explore this option. These three approaches may offer good results in 

practice, so they may be viable directions for future research projects. These restrictions 

to the scope of the project were relatively mild and still offered ample room for significant 

contributions to motion planning and control for underactuated systems. 

This section has outlined the four challenging aspects of the underactuated vehicle 

control problem and identified some research guidelines to keep the effort manageable. 

We will now explain why this area of research is important. 

1.2    Motivation 

There are two practical reasons for developing techniques to plan motions for and 

to control underactuated systems. First, a fully actuated system requires more control 

inputs than an underactuated system, which means there will have to be more devices 

to generate the necessary forces. The additional controlling devices add to the cost and 

weight of the system. Finding a way to control an underactuated version of the system 

would eliminate some of the controlling devices and could improve the overall performance 

or reduce the cost. The second practical reason for studying underactuated vehicles is 

that underactuation provides a backup control technique for a fully actuated system. If 

a fully actuated system is damaged and we have an underactuated controller available, 

then we may be able to recover gracefully from the failure. The underactuated controller 

may be able to salvage a system that would otherwise be uncontrollable. This reason 

for designing controllers for underactuated systems would be especially useful for aircraft 

or spacecraft, where actuator failures can be catastrophic to the vehicle or its mission. 

Section 6.6 will describe in more detail how techniques for underactuated systems can 

assist with failure recovery for fully actuated systems. 



1.3    Contributions 

This research effort has developed techniques for uhderactuated vehicles and makes 

contributions to both the motion planning and the control disciplines. We will highlight 

the key contributions presented in the following chapters. 

There are three significant results from the motion planning research. First, we 

developed a technique to directly plan motions for planar underactuated vehicles using 

polynomial curves and numerical methods. The polynomial curves can be cubic splines, 

Pythagorean hodograph curves, or other curves that can be quickly generated to link 

two configurations. We then used the underactuated vehicle model to extract a complete 

feasible trajectory from the simple polynomial curve. Section 3.2 provides more details 

on this contribution. The second major motion planning result was to demonstrate how 

an iterative ff^-filter could be used to improve the feasible trajectory derived from the 

polynomial curve. The filter updates the trajectory and moves the final configuration 

closer to the goal configuration to improve the performance of the motion planner; see 

Subsection 3.2.4 for a complete explanation of the iterative #°°-filter. The final motion 

planning result was to show how to incorporate elements from the basic motion planning 

approach with established motion planning algorithms to solve more challenging planning 

problems for an underactuated vehicle. Specifically, we identified the path length of 

the polynomial curve generated in the basic planning algorithm as a valuable part of a 

metric used in a randomized planning technique. We explain the randomized planning 

technique, how to improve the metric and how to use the new approach to address the 

obstacle avoidance and multiple vehicle planning problems in Section 3.3. 

We would also like to highlight two primary contributions from the controller design 

aspects of the problem. The first contribution was the development of a linearized perfect 

state feedback H°° controller for an underactuated system. We proved that the controller 



provides local exponential stability for the closed-loop system and offers a solution to the 

tracking control problem. In addition, our research characterized the disturbance attenu- 

ation properties and the region of attraction for the closed-loop system and demonstrated 

that the technique works for both minimum and nonminimum phase systems. Chapter 4 

provides the complete results for this contribution. The other major result from the 

controller design research was the development of an iJ^-filter based on a unique de- 

composition of the underactuated model and used to estimate the states of the system. 

The filter design is successful because we can decompose the full nonlinear system into 

two subsystems, with the property that each is affine if the state of the other subsystem 

is known. This structure allowed us to develop an approach for estimating the complete 

state from an imperfect partial state measurement. We then combined the state estimate 

with the state feedback controller to develop an imperfect state measurement controller 

for the underactuated system. We were also able to prove a form of disturbance atten- 

uation for the closed-loop system using the imperfect state measurement controller. We 

present the details behind this second contribution in control design in Chapter 5. 

Our research has made some additional contributions in other directions that we will 

describe as we present the results in Chapters 3, 4, and 5. We highlighted the above 

five contributions because they stand out as the most significant results of this research 

effort. 

1.4    Underactuated Vehicle Model 

We present in this section the vehicle model used for this research effort and describe 

some of its characteristics. The model was used earlier by Pettersen and Nijmeijer [3] 

and we have made only minor changes to simplify the notation. For a more detailed 

description of this and similar models, see [4]. The relevant equations of motion for this 

8 



system are 

ü   = muvr — duu + Ui + Wi (1.1) 

v   = mvur — dvv + w2 (1.2) 

f   = mruv — drr + U2 + W3 (1.3) 

X    = u cos(ip) — v sin('0) (1.4) 

y = u sin(^) + v cos(ip) (1.5) 

i> = r (1.6) 

and y are the inertial positions; and ip is the inertial rotation angle. The coefficients rrii 

and di represent combined mass terms, including added mass, and damping coefficients. 

The two control inputs are u\ and u^. The disturbances W{ only appear in Equations (1.1) 

through (1.3) because they represent forces or torques that influence the acceleration of 

the vehicle. Equations (1.4) through (1.6) are just the kinematics of the system relating 

the inertial reference frame to the body frame, and they do not have any disturbances. 

One of our research objectives is to design the control inputs ux and «2 such that the 

vehicle tracks a feasible trajectory. A feasible trajectory can be generated by simulating 

the ship model described above without the disturbances. The following equations de- 

scribe the desired system, the state of which constitutes a feasible trajectory. In these 

equations, the subscript d indicates the desired values for the states and control inputs 

ud   =   muvdrd- duud + uld (1.7) 

vd   =   mv ud rd - dv vd (1-8) 

rd   =   mr ud vd -drrd + u2d (1-9) 



xd   =   ud cos(^d) - vd sin(V'd) (1.10) 

yd   =   ud sm(i/jd) + vd cos(ipd) (1.11) 

ipd   =   rd (1.12) 

where we know the initial conditions of the states and the value of u\d and U2d for all 

time. We note that the motion planning algorithm will generate the control inputs u\d 

and u2d so that the feasible trajectory approaches the specified final configuration. 

An equivalent way to state the tracking problem is to require the difference between 

the actual vehicle configuration and the desired configuration to approach zero. Denote 

the difference between the two configurations as the error. Since the vehicle will not nec- 

essarily share the same initial conditions as the desired system, the tracking controller 

will drive the error to zero and minimize the effect of the disturbances as the vehicle con- 

verges to the reference trajectory. To help in the analysis, we write the error differential 

equations by subtracting the desired equations from the system equations and defining 

the error variables as ae = a — ad, where a represents any state or control variable, to get 

«e   =   mu(verd + vdre + vere) -duue + uu + wi (1-13) 

ve   =   mv(uerd + udre + uere) -dvve + w2 (1-14) 

re   =   mr(uevd + udve + ueve) - drre + u2e + w3 (1-15) 

Xe     =    Ud[cOs(lpd + Ipe) - COs(^d)] + Ue COs(lpd + l/)e) 

- vd[sin(il)d + ipe) - sin(^d)] - ve sin(^d + ipe) (1.16) 

ye   =   ud[sm(ipd + ij)e) - sin(V>d)] + ue sm(ipd + ipe) 

+ Vd[cOs{lpd + 1pe) ~ COs(^d)] + Ve COs(lpd + 1pe) (1.17) 

4   =   rc. (1-18) 

We will find it helpful to use an alternative, but equivalent, description for the kine- 

matic equations (1.4) through (1.6) for parts of the analysis. The second description uses 

10 



variables Zi, z2, and z3 instead of a;, y, and ip, and the transformation is 

Z\   =   xcos(^) + ysin('0) 

^2   =   — xsin(^) + ycos(,0) 

^3   =   iß- 

(1.19) 

(1.20) 

(1.21) 

This transformation yields the following three kinematic equations after taking time 

derivatives and simplifying: 

21   =   1x4- z2r 

Z2     =     V — Z\T 

z3   =   r. 

(1.22) 

(1.23) 

(1.24) 

We note that the transformation from [x, y, ip] to [zi, z2, z^] is invertible, and hence 

given either description, we can recover the other one. 

To help ease notation, it will be convenient to have a simple expression to describe 

each of the different types of equations of motion. To represent the actual system with 

the x, y, and ip variables in (1.1) through (1.6) we use 

q = f(t,q) + B{t)u + D{t)w (1.25) 

where f(t, q) is a vector-valued nonlinear function and the boldface variables represent 

vectors. Specifically, we have 

T 

q = 

u    = 

w 

" " 

u   v   r   x   y   ip 

1 T 

«1     «2 

1 T 

Wi     W2    Wz 

11 



We also have similar expressions for the desired system and the error equations, given by 

<ld   =   f(t,qd) + B(t)ud (1.26) 

qe   =   fe(t,qe) + B(t)ue + D(t)w. (1.27) 

Note that the desired system equation given by (1.26) uses the same nonlinear function 

as (1.25), but the error equation (1.27) will have, in general, a different nonlinear function. 

When we use the Zi variables in the system equations, we will include a z subscript to 

arrive at the following compact notation: 

q2 = /*(*, q*) + B(t)uz + D(t)w. (1.28) 

We will introduce additional notation as required when we analyze the problem. 

The vehicle model we presented allows us to incorporate into the problem the four 

design challenges described in Section 1.1. The system is underactuated because there 

are only two control inputs and three degrees of freedom with the motion. The model is 

nonlinear because it contains terms where the states are multiplied together, as well as 

trigonometric functions. The disturbances appear explicitly through the Wi terms. The 

imperfect state measurement feature arises naturally because, typically, the controller 

can access only noisy measurements of the states describing the position and orientation 

of the vehicle. We will use this model to develop a solution to the basic motion planning 

problem and then expand that solution to address the obstacle avoidance and multiple 

vehicle planning problems. In addition, we will construct both perfect state feedback and 

imperfect state measurement tracking controllers based on this model. 

The remainder of this thesis is organized to correspond to the sequential design process 

for planning and controlling the motion of an underactuated vehicle. We start with a 

comprehensive literature review in Chapter 2. Chapter 3 describes the solution to the 

basic motion planning problem and how to combine the solution with other planning 

12 



techniques to solve more challenging problems. The motion planning algorithm generates 

a feasible trajectory for the underactuated vehicle to track. With a feasible trajectory in 

place, Chapter 4 solves the state feedback tracking control problem and proves stability 

for the closed-loop system. We also explore the disturbance attenuation properties and 

the region of attraction for the state feedback controller. Chapter 5 modifies the state 

feedback controller to handle the imperfect state measurement case and proves local 

disturbance attenuation results. Chapter 6 provides simulations illustrating the results of 

the motion planning and control techniques applied to the underactuated vehicle model. 

The final chapter provides a summary of the completed work and proposes additional 

research areas that came to light during the investigation. 
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CHAPTER 2 

LITERATURE REVIEW 

The literature associated with motion planning and underactuated vehicle control 

provides the foundation for the current research effort. The breadth of the existing 

literature is quite large, so we will present the key works related to the current effort. 

Our original contributions build directly on some of these recent results. The review 

below considers literature from the motion planning, underactuated vehicle control, and 

i?°°-optimal control disciplines. We will describe the literature from each discipline and 

explain how it relates to our original contributions. 

2.1    Motion Planning 

We will survey the motion planning literature with two goals in mind. The first goal 

is to provide a summary of the relevant research that is related to the motion planning 

problem for a nonlinear underactuated vehicle. This summary will extract the key ref- 

erences from the vast collection of work on motion planning and explain how they are 

relevant to our problem. The second goal for this portion of the literature review is 

to justify the approach of incorporating randomized planning techniques with the basic 

motion planning algorithm to solve the obstacle avoidance and multiple vehicle planning 

problems. There are clearly other alternatives for addressing these problems, but ran- 

domized techniques offer a fair balance between being able to handle the underactuated 
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dynamics of the vehicles in a complex environment and being able to generate a solution 

quickly. Randomized techniques do not guarantee that a solution will be found, but if a 

solution is possible, it is very likely they will find it relatively quickly. 

2.1.1    General motion planning references 

A good starting point to understand the motion planning problem and some of the 

common solution techniques is the recent paper by Latombe [5]. This paper presents 

a summary of current motion planning research, describes some of the new problems 

that are emerging, and predicts what may happen with the field in the near future. 

Latombe emphasizes the fact that applications outside of robotics will significantly influ- 

ence motion planning research. In addition, he hints at the fact that randomized planning 

techniques may be a key factor in developing solutions for systems with many degrees of 

freedom. 

For a more complete introduction to the motion planning problem, there are four 

valuable references that are germane to our problem. The textbook by Latombe [6] is 

the standard reference for basic motion planning concepts and provides a comprehen- 

sive description of the subject. Latombe explains the fundamental techniques, including 

roadmap, cell decomposition, and potential field planning methods. He also addresses 

the more advanced problems of handling multiple objects, kinematic constraints, and 

dealing with uncertainty. Another resource is the survey paper by Hwang and Ahuja [7], 

which contains an extensive description of the motion planning problem. The authors 

also provide an excellent list of references to help guide additional research on the sub- 

ject. The third general reference is a collection edited by Li and Canny [8] which focuses 

on nonholonomic systems. This book offers information that is more closely associated 

with motion planning for underactuated vehicles. The techniques addressed in the book 

15 



include steering using sinusoids and differential geometric methods. The final reference 

in this set is the compilation edited by Laumond [9]. Laumond's book contains six chap- 

ters that address different aspects of the problem, including planning for nonholonomic 

systems, probabilistic methods, and collision detection algorithms. Along with [5], these 

four references provide a thorough overview of the motion planning problem and common 

solution techniques. However, to develop our motion planning solution, we will have to 

examine more detailed articles in the literature. 

The motion planning literature can be divided into deterministic and randomized 

methods. Deterministic techniques offer direct approaches for developing solutions and 

make it easier to prove when a solution will be found, but they can be time consuming for 

high-dimensional problems. By their nature, the randomized methods make it difficult 

to prove the results, but they offer promising techniques that can often solve challeng- 

ing problems quickly. To help structure the motion planning literature review, we will 

first consider deterministic techniques and then shift our focus to consider randomized 

planning methods. 

2.1.2    Deterministic planning techniques 

Two papers by Djouani and Hamam [10,11] consider motion planning for a ship 

and are directly related to this research. The authors form a nonlinear optimal control 

problem to find a minimum time-energy trajectory. Their algorithm uses an augmented 

Lagrangian approach to solve the nonlinear programming problem, which is similar to 

a penalty function method. The algorithm produces the control inputs for the ship to 

approach the desired configuration and allows the design to account for obstacles in the 

environment. The solution uses an iterative numerical approach and the authors do not 

comment on the computational requirements or how quickly the algorithm converges. 
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The overall approach is reasonable and offers an alternative to the basic motion planning 

solution we will present in Chapter 3. 

The motion planning problem we are trying to solve can be formulated as a two-point 

boundary value problem since the initial and terminal conditions are known and the 

solution must satisfy the equations of motion. The multipoint shooting method offers 

one numerical approach to solve this challenging problem [12]. With some simplification, 

the method guesses a portion of the solution, computes the trajectory, uses the resulting 

terminal error to update the initial guess, and iterates until the final boundary condition 

is satisfied. Yih and Ro [13] apply the multipoint shooting method to plan motions for 

nonholonomic systems. Since this is an iterative technique, our basic motion planning 

algorithm improves on it by offering a way to directly construct the trajectory. 

With a slightly different formulation, the motion planning problem can also be cast as 

a nonlinear optimization problem in an infinite dimensional space. Fernandes, Gurvits, 

and Li [14,15] provide a solution to this version of the problem by approximating the 

infinite-dimensional space with a finite basis. The approximation reduces the task to 

a finite dimensional problem, and the authors outline how to construct the basis and 

then efficiently solve the optimization problem. This approach is constructive and offers 

another viable alternative to our proposed techniques. 

The motion planning problem is posed as a different type of optimal control problem 

by Spangelo and Egeland [16]. The authors achieve optimal trajectory planning and colli- 

sion avoidance using optimal control techniques. Their innovation is to use a performance 

index that is a combination of the amount of energy and the time required to execute a 

motion. The authors use path constraints to prevent collisions. The approach is based on 

a numerical shooting method to develop a solution and requires a fully actuated system 

to implement the results. 
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Arai, Tanie, and Shiroma collaborated on several motion planning articles that are 

useful for our problem. In [17,18], they use time-scaling control and a bidirectional 

motion planning approach to develop trajectories for a robot with one passive joint. 

Time-scaling allows the authors to control the velocity of the active joints, which in turn 

provides control over the drift of the passive joint. The bidirectional motion planning 

algorithm searches forward from the initial condition and backwards from the terminal 

condition to find a complete path. In this work, the initial and final configuration put 

the robot at rest, which is not necessarily a feature we want to include for our problem. 

In related works [19,20], the same authors develop a motion planning algorithm for an 

underactuated robot that accounts for the dynamics of the system. They construct a 

trajectory by combining translational and rotational motion segments to achieve the 

overall objective. Although we also exploit the dynamics of the vehicle in planning the 

path, the results from the work of Arai, Tanie, and Shiroma [17,18] apply to only a 

specific type of underactuated robot and do not generalize to other systems. 

Lynch, Shiroma, Arai, and Tanie [21] also use time-scaling to control an underactuated 

vehicle. Their motion planning algorithm is a best-first search and allows the authors to 

avoid obstacles in the environment. The technique will yield a path that approaches the 

desired configuration, but may not reach it exactly. The search technique relies on the 

small-time locally controllable property of the robot to advance the path. It does not 

offer a direct method for constructing a trajectory. 

Reister and Lenhart [22] document a method for finding time-optimal paths for 

constant-speed vehicles. The paths are constructed from arcs of circles and straight 

line segments to connect the initial and final configurations. The approach contains el- 

ements similar to those originally proposed by Reeds and Shepp [23]. Reeds and Shepp 

catalog the types of paths available to a car-like vehicle that can travel forwards and 

backwards and describe an approach to identify the shortest length path. Sussmann and 
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Tang [24] advance the results of Reeds and Shepp by showing how to construct the solu- 

tion using geometric techniques and nonlinear optimal control. In addition to providing 

an alternative derivation for the planning results, Sussmann and Tang [24] were able to 

reduce the catalog of required paths to 46 from the original 48 proposed by Reeds and 

Shepp. Soueres and Laumond [25] further refined the planning approach using Reeds- 

Shepp curves by showing how to partition the configuration space into regions where the 

same type of path is optimal to reach the region. This partitioning provides an efficient 

method for selecting the appropriate trajectory based on the vehicle's initial configura- 

tion. We will extract elements of these approaches when we consider the problem of 

constructing minimum distance trajectories for an underactuated vehicle. 

Another approach to motion planning formulates the problem from a game-theoretic 

perspective and applies numerical techniques to search for an optimal path. LaValle [26] 

presents a general framework for this approach and applies it to several variations of 

the motion planning problem, including obstacle avoidance and multiple vehicle motion 

planning. LaValle and Hutchinson [27] discuss optimal motion planning for multiple 

robots. Their intent is to solve the collision avoidance problem and simultaneously opti- 

mize a performance measure for each robot. In addition, one of their approaches using 

independent roadmaps for each robot offers a compromise between centralized and de- 

coupled motion planning for multiple robots. Briefly stated, centralized planning for 

multiple robots concatenates the individual robots into a single system with constraints 

that prevent collisions. The motion planning problem can then be solved for the com- 

bined system. In contrast, the decoupled approach to planning solves the problem for 

each robot independently and then locally resolves conflicting motions as they arise. By 

finding a balance between these two common techniques, LaValle and Hutchinson [27] are 

able to consider a wider range of motions and to find optimal solutions to the problem. 
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A purely decoupled planning algorithm that might be useful for our situation also 

poses the planning problem as a noncooperative dynamic game among the vehicles. 

Tomlin, Pappas, and Sastry [28,29] developed this approach in the context of air traffic 

management, but the main principles could be adapted to handle underactuated vehicles. 

The basic idea with the approach is to create a protective bubble around each vehicle 

and to replan motions if the existing plans cause a vehicle to trespass into another's pro- 

tected zone. The approach assumes the vehicles cannot communicate and hence cannot 

cooperate in replanning their motions. To handle this situation, each vehicle will assume 

the other will take the most hostile action possible and will plan to maintain separation 

regardless of the other vehicle's action. This worst-case perspective can be formulated 

as a dynamic game, and solutions can be developed from the resulting Hamilton-Jacobi 

equations. The replanned motions involve making turns or adjusting speeds to avoid 

hazardous situations. To adapt the approach for the underactuated vehicle problem, we 

would have to account for the new dynamic equations and introduce obstacles into the 

environment. 

Another decoupled approach treats the individual position paths as deformable elastic 

bands that stretch or contract to accommodate changes in the environment or the motion 

of other vehicles. The preliminary ideas on this line of research were presented by Quinlan 

and Khatib [30] and were later extended by Khatib, Jaouni, Chatila, and Laumond [31] 

to handle nonholonomic vehicles, and by Brock and Khatib [32] to address the multiple 

vehicle case. In [32], the authors explain how to use velocity tuning or a combination of 

velocity and trajectory tuning to resolve conflicting motions after the individual motions 

have been planned. The elastic band approach uses potential fields to determine the new 

shape of the trajectories in response to the other vehicles or newly discovered obstacles. 

We could again modify this approach for the underactuated vehicle by incorporating the 

new dynamic equations to account for the underactuated nature of the motion. 
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2.1.3    Randomized planning techniques 

Randomized techniques inject unpredictable motions or search steps into the process 

to achieve excellent results in practice. Barraquand and Latombe [33] combine ran- 

domization with a potential field method to solve the motion planning problem. Their 

approach uses potential functions to plan the general motions of the robot and the ran- 

domization enters the algorithm if the robot enters a local minimum that is not the goal 

state. The approach uses a random walk from the local minimum to escape its region of 

attraction. The robot can then follow the potential function again in search of the goal 

state. The authors showed that the approach works well for robots with many degrees 

of freedom, for complicated environments, and when multiple robots are navigating the 

same environment. For the multiple vehicle case, the authors treated the vehicles as a 

single higher-dimensional system to perform coordinated planning. 

Another randomized technique for solving motion planning problems is the proba- 

bilistic roadmap planner developed by Kavraki, Svestka, Latombe, and Overmars [34,35]. 

This planner solves the problem in two steps for robots with many degrees of freedom 

operating in static environments. The first step is a learning phase where a roadmap 

is randomly generated to infiltrate the free configuration space. The learning process 

relies on a fast local planner to connect the individual configurations. After the learning 

phase, the second step is the query phase where the algorithm attempts to generate a 

path between two free configurations. The query phase tries to connect the start and goal 

configurations to the roadmap and then determine a route along the roadmap to con- 

nect the endpoints. After a suitable learning period, the approach can quickly generate 

solutions for complicated robots and challenging environments. The authors note that 

the approach should be customized for each application to improve the results. Since 

the approach contains random aspects, it is not possible to guarantee the performance, 
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but Kavraki, Kolountzakis, and Latombe [36,37] have made efforts to quantify the ap- 

proach and determine bounds on the number of points that should be examined to find 

a solution with a given probability. This approach has been extended to handle robots 

with nonholonomic constraints [38] and when multiple robots are moving in the environ- 

ment [39]. See [40] for a detailed analysis of the randomized roadmap planner and the 

approach developed by Barraquand and Latombe. 

LaValle collaborates with Kuffner [41] to develop a randomized search technique that 

accounts for the dynamics of the vehicle to identify feasible trajectories. The randomized 

technique is called rapidly-exploring random trees (RRTs). The approach builds a tree 

between the initial and goal states by sampling the free configuration space and planning 

motions between the samples. The type of tree and sampling scheme can be tailored to 

improve the performance of the algorithm. The approach easily incorporates kinodynamic 

constraints for the vehicle and obstacles in the environment. In addition, the approach 

offers attractive advantages in computation speed and flexibility that may be useful when 

we address the obstacle avoidance problem and planning for multiple vehicles. 

The paper by Hsu, Latombe, and Motwani [42] uses a technique similar to rapidly- 

exploring random trees to generate paths between initial and goal states. The authors 

expand from the initial and goal states by choosing points that have relatively few neigh- 

bors and sampling the free space around these points. The approach then tries to connect 

the existing tree to the new points. The algorithm also tries to connect the trees growing 

from the initial and goal states together to complete the path. Related works by Kindel et 

al. [43] and Hsu et al. [44] apply the technique to systems with kinodynamic constraints 

to achieve excellent results. The authors demonstrate that the approach performs well 

when the environment includes multiple moving obstacles. We note that the main dif- 

ference between this approach and RRTs is in how the existing path is extended into 
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the unexplored regions. This difference is relatively minor and both approaches produce 

similar results. 

Hu et al. [45] developed another planning technique that layers random motion on 

top of a deterministic plan to develop collision-free motions. Their decoupled planning 

approach was designed to resolve potential conflicts between aircraft. The algorithm 

efficiently estimates the probability of a conflict and then adapts the motion of each 

aircraft to reduce the likelihood of a collision. This randomized approach offers a potential 

solution to the multiple vehicle planning problem. 

The recent paper by Leven and Hutchinson [46] presents another variation on the 

probabilistic roadmap planning approach. Their contribution solves the problem by first 

finding a roadmap to represent an environment with no obstacles. The authors then 

determine a mapping between regions in the workspace and segments of the roadmap. 

With these two preprocessing steps completed, the algorithm can then plan motions 

in real time when obstacles are present. To do so, the real-time planner first uses the 

mapping to eliminate the portions of the roadmap that are blocked by obstacles. Then the 

planner searches the remaining roadmap to connect the initial and goal configurations. 

This approach is extremely successful at developing plans for high-dimensional systems, 

but it requires the extensive preprocessing stage to develop the solutions. 

For our motion planning problem, we are seeking a technique that can quickly generate 

paths for nonlinear underactuated vehicles, that can handle obstacles in the environment, 

and that can accommodate planning for multiple vehicles. Chapter 3 presents our original 

solution to the basic motion planning problem, but this approach alone cannot handle 

the obstacle avoidance and multiple vehicle planning problems. The recent trends in 

the literature indicate that randomized techniques offer the best chances for quickly 

generating solutions to these more demanding problems. Other approaches may be able 

to guarantee finding solutions when they exist, but the computational requirements make 
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these algorithms impractical with current processing speeds. From the assortment of 

randomized techniques available, we selected RRTs [41] as a tool to help address the 

motion planning problem. The approach appears to be sufficiently fast and is flexible 

enough to handle the variations of the underactuated vehicle problem. We will use our 

solution to the basic motion planning problem to correct some of the deficiencies in the 

RRTs algorithm and report on the results in Chapter 3. 

2.2    Underactuated Vehicle Control 

A fair amount of research effort has been applied to study the control problems 

associated with underactuated vehicles in air, land, sea, and space environments. For our 

contributions, we used a model of an underactuated ship and posed a tracking problem 

inspired by the work of Pettersen and Nijmeijer [3,47]. Their controller is based on a 

variation of the backstepping technique and allows the ship to recover from initial errors 

to track a reference trajectory. Their model does not include disturbances and they 

have not proven stability for the output feedback controller used for the experiments 

described in [47]. The theoretical results presented by Pettersen and Nijmeijer rely on 

a set of transformations that put their nonlinear system in chained form so that they 

can apply the approach Jiang and Nijmeijer presented in [48]. Pettersen and Nijmeijer 

developed a different way to perform tracking for an underactuated vehicle by combining 

backstepping with averaging as reported in [49]. The model for this problem did not 

include disturbances and the resulting motion displayed oscillations in the orientation 

and lateral velocity of the vehicle. These researchers also teamed to study the output 

feedback tracking problem for ships in [50], but this effort did not consider underactuated 

vehicles. 
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Godhavn developed a more traditional type of backstepping controller to make a 

ship track a desired trajectory [51]. This work was recently extended by Toussaint, 

Ba§ar, and Bullo [52] to account for vehicles with generalized forces. Godhavn's approach 

required the ship to move along straight lines or arcs of circles to guarantee stable zero 

dynamics for the nonlinear system. Although our approach also restricts the class of 

reference trajectories the vehicle can track, we allow for a much wider range of motion 

than just straight lines and arcs of circles. In addition, under certain initial conditions, 

Godhavn's approach would allow the ship to rotate 180 degrees and track the reference 

path backwards. Our approach corrects this deficiency, and the simulations show that 

the vehicle makes natural maneuvers to recover from poor initial conditions. 

Other results in underactuated vehicle control come from Leonard [53-55]. Leonard's 

research focuses on underwater vehicle control, but the system models and control the- 

ories are similar to those for surface vessels. Her results rely on energy-based methods 

and exploit the natural dynamics of the vehicles to stabilize a steady motion, which is 

also known as a relative equilibrium. 

Bullo has adopted a geometrical approach for controlling the motion of a vehicle 

along relative equilibria. His work with Leonard and Lewis, as reported in [56-58], 

considers underactuated vehicles. In addition, Bullo and Murray [59] have recently used 

the geometric description to develop results for a fully actuated vehicle, and Bullo has 

provided in [60] a general description of the geometrical version of the problem. 

Although the above references focus on nautical vessels, underactuated control tech- 

niques have been developed for other vehicles as well. Reyhanoglu, van der Schaft, 

McClamroch, and Kolmanovsky [2] have presented a general framework for studying un- 

deractuated systems, which offers a compact introduction to the subject and includes 

applications to different types of vehicles. Hauser, Sastry, and Meyer [61] used exact 

linearization to control the motion of an underactuated air vehicle. Martin, Devasia, and 
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Paden [62] considered the same type of air vehicle as Häuser, but approached the problem 

using flat outputs to find an appropriate controller. Reyhanoglu [63,64] and Reyhanoglu, 

van der Schaft, McClamroch, and Kolmanovsky [65] addressed the underactuated space- 

craft control problem. Underactuated robots have been discussed in Spong [66,67] and 

the references therein. 

2.3    #°°-Optimal Control 

The final set of literature related to our problem addresses the solution to the H°° 

-optimal control problem. To help explain the rationale for selecting the combination 

of linearization and H°° design for our approach, we will start by reviewing a variety of 

standard nonlinear control techniques and describe why they are not appropriate for our 

problem. We will then describe the literature related to the tracking control problem 

with an emphasis on H°° techniques. 

2.3.1    Alternative nonlinear control techniques 

The first nonlinear control approach we considered for this problem was exact lin- 

earization. Isidori [68] provides a complete description of the theory behind this approach 

for single-input single-output systems, as well as for multiple-input multiple-output sys- 

tems. The essence of the approach is to find a coordinate transformation, which performs 

a change of variables, and a state feedback for the nonlinear system, such that in the new 

coordinates and with the feedback the resulting system is linear with respect to a new 

input. Once we know the exact linearization of the system, we can use any of the well 

established linear design techniques to develop a controller for the system. We can then 

reverse the coordinate transformation and the state feedback rule to find the correspond- 

ing controller for the original nonlinear system. We cannot use exact linearization for the 
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underactuated vehicle control problem because the system does not satisfy the sufficient 

conditions to use the approach. Specifically, the equations of motion for the vehicle do 

not have a well-defined vector relative degree, which prevents us from performing the 

exact linearization. 

A recent paper by Devasia, Chen, and Paden [69] is closely related to the exact 

linearization approach and deserves a few comments. The authors developed a nonlinear 

operator that allows them to invert a nonlinear system to reconstruct the input from the 

desired output trajectory. This problem is very similar to the one we are addressing here 

and the technique relies on the same tools used for exact linearization. The significant 

drawback with the approach that makes it inappropriate for our problem, however, is 

that the control law does not work very well when there are unmodeled dynamics or 

disturbances. 

A related alternative to exact linearization is input-output linearization, which is also 

known as partial linearization [68]. In this variation, we select a set of outputs and then 

find the coordinate transformation and state feedback to make the new system linear with 

respect to the outputs. This approach is especially useful if we are interested in tracking 

just a portion of the state vector and do not need to control the remaining states. Input- 

output linearization has the by-product of generating zero dynamics, which describe the 

internal behavior of the transformed system. To develop well-defined results, the zero 

dynamics must be stable. Relating this approach to our problem, we have two control 

inputs available in the design and could perform input-output linearization if we select 

appropriate outputs. The most appropriate outputs to influence the motion of the vehicle 

are the x-y position coordinates. This choice for outputs does not lead to a well-defined 

relative degree, so the approach will not work. In addition, using the Zi position variables 

described in Section 1.4 does not resolve the problem. We could input-output linearize 

the system if we chose x and iß as the output variables, but having the ability to exactly 
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track these two elements of the state vector leads to trajectories that do not follow the 

y position variable. Not being able to track the y position translates into exceptionally 

poor performance. Input-output linearization is feasible for our system, but it produces 

designs that do not necessarily track the entire configuration, which is one of our goals. 

Another common nonlinear control design technique is integrator backstepping. The 

standard reference for backstepping is the text by Krstic, Kanellakopoulos, and Koko- 

tovic [70], which also describes adaptive control techniques. The basic idea behind back- 

stepping is that if we can write the system equations with a certain structure (parametric 

strict-feedback form), then there is an iterative procedure to build a controller by con- 

sidering one layer of the system at a time. As mentioned in Section 2.2, backstepping 

has been used to address the nonlinear underactuated vehicle problem we are consider- 

ing [3,51]. The backstepping approaches offer alternatives to our design, but they do not 

explicitly account for the disturbances that enter the equations of motion. The track- 

ing controller we will present includes the disturbances in the design process, and we 

will demonstrate how it performs better than the two backstepping approaches when we 

present the simulation results in Chapter 6. 

Two other techniques that could be used to solve this type of nonlinear control prob- 

lem are gain scheduling and pseudolinearization. See Khalil's text [71] for a general 

description of gain scheduling, and the paper by Reboulet and Champetier [72] for an 

introduction to pseudolinearization. Briefly, gain scheduling linearizes the system equa- 

tions about a set of operating points and then determines a switching schedule among 

the points to maintain control over the system. The key challenge in this approach is to 

design the switching schedule to achieve the desired performance. Pseudolinearization is 

a related approach, where a coordinate transformation and a feedback are used to make 

the system such that when the new system is linearized, the results do not depend on the 

operating point. This approach allows the designers to develop a single controller based 
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on a linear system, and it does not require scheduling to account for different operating 

points. Both of these techniques could be applied to nonlinear underactuated systems, 

but we chose to study H°° techniques instead. We will leave the application of gain 

scheduling and pseudolinearization to underactuated systems as open research problems. 

We have outlined a variety of nonlinear control techniques that are standard ap- 

proaches for the type of problem we are considering. We have decided to apply lineariza- 

tion along with H°° design techniques to address the problem because combining these 

methods offers a tractable approach with reasonable performance. The ability of this 

approach to solve the nonlinear underactuated vehicle tracking problem has not been 

documented and we are contributing to fill that vacancy. The linearization simplifies the 

design, but restricts our analysis so that we can only prove local results. The H°° tech- 

niques partially compensate for the linearization because they are robust with respect 

to disturbances. Since our problem statement explicitly includes disturbances, we must 

develop an approach to attenuate their effect on the system. The approach also allows 

us to account for the linearization errors by incorporating the remaining nonlinear terms 

into the disturbances. This approach is more conservative, but allows us to make precise 

statements about the closed-loop performance. 

To complete this section, we will now review the literature directly related to tracking 

control and the disturbance attenuation problem. 

2.3.2    Tracking control literature 

There is a great deal of literature that addresses the tracking control and the output 

feedback disturbance attenuation problems. In this summary, we will attempt to highlight 

some of the key contributions to these fields. We will mention the papers that provide 
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the fundamental results and make more detailed comments on the references that are 

directly related to our solution of the problem. 

Three papers by van der Schaft lay the ground work for studying nonlinear H°° con- 

trol. In [73], van der Schaft shows how to relate the disturbance attenuation performance 

of a nonlinear system to the performance of the linearization of the system. The paper 

captures the basic approach we used in the controller design for the underactuated vehi- 

cles and explains how the Riccati equations for the linearized system are related to the 

Hamilton-Jacobi equation for the nonlinear system. This first paper considered time- 

invariant systems and used a performance index based on an infinite time horizon. In 

contrast, our problem has a time-varying nonlinear system (and linearization) and a fi- 

nite horizon performance index. Van der Schaft expands on these results in [74], where 

he accounts for the finite horizon performance index and provides a more detailed de- 

scription of the results. In this paper, Remark 24 is relevant to our problem. In that 

remark, van der Schaft suggests an approach to prove that the solution to the linearized 

problem maintains the same performance level as the solution to the nonlinear problem. 

In addition, the remark indicates the region of attraction for the linearized solution will 

be contained in the region of attraction for the nonlinear solution and the latter region is 

the largest one possible. In the third paper [75], van der Schaft summarizes the previous 

results and includes the solution to the H°° dynamic output feedback problem. The 

solution to this problem is based on two Riccati equations and uses the game-theoretic 

approach from [76] to develop the results. The three papers by van der Schaft provide 

a basic introduction to the nonlinear H°° control problem we are trying to solve for an 

underactuated system. 

Isidori provides a comprehensive review of disturbance attenuation for nonlinear sys- 

tems in [77]. The paper develops the results in the linear setting and then highlights the 

similarities in finding a solution to the nonlinear problem. 
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Our underactuated vehicle control problem involves tracking a desired trajectory, 

and we have formulated the problem in terms of the error dynamics, so it is essentially 

a regulation problem. Isidori and Byrnes [78] address the output regulation problem 

for nonlinear systems. Their results reiterate the fact that the solution requires solving 

a nonlinear partial differential equation. Although this problem is generally difficult to 

solve, Krener [79] describes approaches for iteratively constructing the solution developed 

by Isidori and Byrnes. The nonlinear system in [78] is time-invariant and the authors 

allow the time horizon to extend to infinity, so we cannot apply the results directly to 

our problem. 

To overcome one of these limitations, Ball, Kachroo, and Krener [80] recently ad- 

dressed the nonlinear H°° tracking problem and provided a solution for the finite time 

horizon case. As expected, the results depend on finding solutions to Hamilton-Jacobi 

inequalities. In addition, the authors have developed numerical techniques for estimating 

solutions to the inequalities and promise to provide more details about their methods in 

the future. 

Since our controller designs also depend on measurement feedback, the papers by 

Isidori and Astolfi [81], and Ball, Helton, and Walker [82] are of interest. Both papers 

consider the infinite time horizon versions of the H°°-control problem for a nonlinear 

system with measurement feedback. In addition, both papers show that the solution 

depends on solving a pair of partial differential equations, but the approaches are slightly 

different. In [81], the authors prove that the solution satisfies the required dissipation 

inequalities and relate the results to the more familiar linear case. In [82], the authors 

rely on a game-theoretic approach to the problem to describe the solution. As described 

below, we will also adopt the game-theoretic approach, since it provides a natural setting 

to analyze the time-varying finite horizon problem. 
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James and Baras [83] present a slightly different solution to the H°° output feedback 

control problem for nonlinear systems. Their more general results show that the required 

H°° controller is expressed in terms of the information state of the system. The informa- 

tion state is infinite dimensional and captures observable information that is important 

for the controller. The information state may not provide the best estimate for the state 

of the system, but it does carry the history which allows us to design the optimal distur- 

bance attenuating controller. The infinite-dimensional nature of the information state 

introduces a significant obstacle to computing the solution. James and Baras [83] devel- 

oped their results using discrete time systems and briefly commented on how to adapt 

the results for continuous time systems. Although this approach is theoretically sound, 

we will not focus on it because it does not readily lead to a practical solution to our 

problem. 

The one paper that brings together all of the keys aspects of the problem we are 

considering is by Lu [84]. Lu addresses the H°° output feedback control problem for non- 

linear time-varying systems with a finite time horizon. The author presents the sufficient 

conditions to find a solution in terms of the familiar Hamilton-Jacobi inequalities. As we 

have mentioned before, this technically accurate solution relying on partial differential 

inequalities is difficult to implement for nonlinear systems. The controller design ap- 

proach presented in Chapter 4 uses linearization and the system decomposition to avoid 

the problems associated with the full nonlinear solution. 

We have adopted a game-theoretic approach to address the control problems, and 

Ba§ar and Bernhard [76] provide a complete account of the solution from this perspective 

for both linear and nonlinear systems. Since this book is a single source that contains most 

of the results required for our disturbance attenuation analysis, we will use its notation to 

present our solution. As a secondary reference, Basar and Olsder [85] provide additional 

material on noncooperative dynamic games.   We followed the results in this book to 
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help derive the optimal solutions for affme-quadratic disturbance attenuation problems. 

The paper by Pan and Ba§ar [86] supplies some key results on how the H°° controllers 

developed for a nominal linear system are still optimal when nonlinear perturbations are 

introduced. We rely on these results to complete the disturbance attenuation proofs for 

our controller designs. 

The H°° controller design uses linearization about a trajectory to generate the solution 

and prove stability. Our results resemble those originally developed by Cheng [87] and 

Walsh, Tilbury, Sastry, Murray, and Laumond [88], but we extend them to account for 

the disturbances in the system. 

The final set of papers in this literature review describe four different techniques for 

obtaining disturbance attenuation results for specific nonlinear systems. Elgersma, Stein, 

Jackson, and Yeichner [89,90] use linearized system equations to study H°° controller 

designs for a rigid spacecraft. Even though they used H°° techniques to analyze the 

system, the authors reverted to a simple linear control law for the final design. In the 

second technique, Kang [91] uses the unique geometric structure in the rigid spacecraft 

problem to show how a simple proportional-derivative control law can be used to satisfy 

the Hamilton-Jacobi inequalities associated with the problem. The geometry of the 

problem enters the solution by providing convenient bounds on some of the terms that 

help reduce the complexity of the inequalities. The results by Dalsmo and Egeland [92] 

and Dalsmo [93] address the same problem and are extremely similar to those by Kang, 

except they use quaternions to express the system coordinates. The new coordinates 

allow the authors to extend some of the local results in [91] to be global in nature. The 

final disturbance attenuation technique comes from the paper by Zasadzinski, Richard, 

Khem, and Darouach [94], and applies to robot manipulators. In this case, the authors 

show how to rearrange the equations of motion for the system and incorporate a linear 

control law to satisfy the Hamilton-Jacobi inequalities. The solution uses output feedback 
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to perform tracking and imposes bounds on the type of trajectories that can be followed 

to complete the proofs. These four techniques provide a cross section of the options 

available to develop control laws, but they all rely on fully actuated controllers, and 

there does not seem to be any way to generalize them to accommodate underactuated 

systems. In view of this, there is a need to develop new techniques to address the problem 

of controlling underactuated systems. 

This section described the standard control techniques that should be considered 

first when dealing with nonlinear systems. We concluded that most of the standard 

approaches were not suitable for the underactuated vehicle tracking problem and we 

selected the combination of linearization and H°° techniques to develop a relatively simple 

solution with reasonable performance characteristics. We also included papers describing 

significant results with H°° control techniques as well as papers addressing the tracking 

problem. The literature review indicates that our approach to the problem is novel and 

shows how our contributions relate to the established results. 

2.4    Literature Review Summary 

We presented a sample of the relevant literature from the motion planning, underactu- 

ated systems and iy°°-optimal control fields to identify how the current work contributes 

to these disciplines. This review helps establish the originality of our results and also 

points to additional related research areas that remain as open problems. Having de- 

scribed this background material, we are prepared to present our solution to the motion 

planning and control problems for a nonlinear underactuated vehicle. 
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CHAPTER 3 

MOTION PLANNING FOR UNDERACTUATED 
VEHICLES 

The first step in the design process is to plan the motion for the underactuated vehicle. 

Our objective is to generate a feasible trajectory that joins an initial configuration with 

a goal configuration in the alloted time frame. A feasible trajectory is one that the 

underactuated vehicle could follow if there were no disturbances and the vehicle's initial 

configuration aligned with the trajectory. There are many ways to address this problem, 

so we will present a direct approach for constructing a trajectory using numerical methods 

and H°° techniques. In addition to solving the basic motion planning problem, we will 

present solutions to the obstacle avoidance and multiple vehicle planning problems and 

we will comment briefly on the minimum distance planning problem. Before addressing 

these items, we will provide a precise formulation of the general motion planning problem. 

3.1    Problem Formulation 

To formulate the basic motion planning problem, we assume we are given the nonlinear 

dynamics describing the vehicle we want to control. We are also given the initial and 

final configurations for the vehicle as well as a time interval for the motion. Denote the 

initial and final configurations as q0 and q/, respectively, and the time interval as [to, 

tf]. Our goal is to find the control inputs to move the vehicle from q0 to q/ during the 
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time interval [to, tf]. We can then apply these control inputs to the equations of motion 

for the vehicle to generate a feasible trajectory. 

For the basic motion planning problem, there are no obstacles in the environment and 

no other requirements for the vehicle, except that its motion must satisfy the dynamic 

equations. We will introduce obstacles and additional vehicles after solving the basic 

problem. Even though the vehicle is underactuated, there are still an infinite number of 

control laws that will move the vehicle from one configuration to the other in the given 

time. We would like to find a technique for directly generating the required controls, 

which is efficient in terms of the required computations, the type of path followed, and 

the amount of control effort expended. 

We note that we have selected a fixed time interval for the motion planning problem. 

The problem can also be formulated with the time interval as a variable, which adds an 

additional degree of freedom to the design. For example, with a flexible time interval the 

design could minimize the time required to complete a motion. We selected the fixed time 

interval approach because it is a realistic requirement for many applications. Situations 

with underactuated vehicles that require completing a motion at a specified time include 

docking a ship at a busy port, maneuvering an aircraft arriving at a gate, and guiding 

a missile to a target in a coordinated attack. In each of these cases, specifying the time 

interval in advance is an important part of the design and it should not be left as a 

variable. 

Having formulated the basic motion planning problem, Section 3.2 presents a solution 

to the problem for underactuated nonlinear vehicles using numerical methods and H°° 

techniques. Section 3.3 describes how to build upon the basic solution to address the 

obstacle avoidance, multiple vehicle, and minimum distance planning problems. We 

conclude the chapter with a brief summary in Section 3.4. 
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3.2    Basic Motion Planning 

The basic motion planning algorithm consists of four main steps to generate a feasible 

trajectory that moves the vehicle from qo to q/. The first step generates a polynomial 

curve in the x-y plane that connects the initial and final positions and has the proper 

orientation at each endpoint. The second step uses the curve to estimate the complete 

trajectory by assuming the vehicle's position aligns with the curve. We call this set of 

configurations the candidate trajectory. Along with the estimate for the trajectory, the 

second step also finds approximate values for the control inputs for the system, which we 

denote as the candidate inputs. At the end of the second step, we have a complete set of 

configurations that take the vehicle from q0 to q/ during [t0, tf\. The third step uses the 

candidate inputs to generate a feasible trajectory for the vehicle. If this feasible trajectory 

approaches the desired final configuration, then the fourth step is not required. If the 

feasible trajectory is not satisfactory, the fourth step implements an #°°-filter which 

uses the underactuated dynamics of the vehicle to update the estimate for the trajectory. 

With an updated trajectory estimate we can also improve the estimate for the control 

inputs. We will iterate the H°°-filter until the resulting feasible trajectory approaches 

the final boundary condition or the iteration does not improve the solution. We now 

provide a detailed description of each step as it applies to the underactuated ship model 

presented in Section 1.4. 

3.2.1    Polynomial position curve generation 

The first step in the motion planning process uses one of two established techniques 

to generate a polynomial position curve connecting the initial and final positions for the 

vehicle with the correct orientation at each endpoint. The first technique uses cubic 

splines to generate the curve and is sufficient for most motion planning problems. The 
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second technique uses Pythagorean hodograph curves to connect the points and is slightly 

more complicated than the cubic spline approach. The additional complexity associated 

with the second approach may be justified if we want to quickly calculate the curve length 

or the curvature along the curve. Appendix A provides detailed information about both 

techniques for generating the polynomial position curves. 

Both curve generation techniques require knowledge of the initial and final configu- 

rations for the vehicle, which are given as 

- T 

u(*o)   v(t0)   r(t0)   x(t0)   y(t0)   ip(t0) qo 

q/ u{tf)   v(tf)   r(tf)   x(tf)   y(tf)   ij>(tf) 

We compute the initial and final velocities in the inertial frame, x(t) and y(t), by using 

q0 and q/ to evaluate (1.4) and (1.5) at t0 and tf, respectively. When combined with the 

orientation information, the initial and final velocities determine the direction of motion 

for the vehicle at the endpoints. We use this information along with the x-y coordinates 

of the endpoints to find an appropriate polynomial position curve. Once we have the 

polynomial expressions for x(t) and y(t), we can use them to estimate the other states 

of the system. 

3.2.2    Candidate trajectory estimation 

The second step in the algorithm uses the polynomial position curve to estimate 

the complete trajectory between the endpoints and to estimate a pair of control inputs 

corresponding to the trajectory. To develop accurate estimates, we will use the equations 

of motion for the system and make some reasonable assumptions about the motion of 

the vehicle. We start with a few comments about notation. 
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We used the 'dot' notation to indicate a time derivative in Equations (1.1)—(1.6), 

because these equations describe how the variables evolve over time. We will use the 

'prime' notation to denote the derivative of a polynomial or an estimated state, so that 

x'(t) is the derivative of the polynomial x(t). We will use the 'hat' notation to denote a 

state or configuration estimate, so that q represents the estimate of q. 

We note that we will use the Mathematica software to perform the calculations for 

the trajectory estimation procedure. This software allows us to take exact symbolic 

derivatives of complicated expressions, which simplifies the approach and improves the 

accuracy of the results. We could use other software packages, such as MATLAB, to 

get similar results, but we would have to rely on numerical estimates of the derivatives. 

If the time step for the numerical derivatives is small, the differences between the two 

approaches should be insignificant. 

For the first step of the trajectory estimation, we use the polynomials for x(t) and 

y(t) as the estimates for the position of the vehicle, so that x(t) = x(t) and y(t) = y(t). 

These position estimates may not represent a feasible motion for the underactuated 

vehicle, but they do represent the type of curve we would like the vehicle to follow to 

satisfy the boundary conditions. We will treat the difference between the x-y curve and 

a similar feasible path as a disturbance for the motion planning algorithm to attenuate. 

The iterative i7°°-filter will attenuate this disturbance as it improves the estimate for 

the trajectory. 

We will perform a local analysis of the vehicle's motion to find estimates for the other 

states. At any fixed time ti, the instantaneous motion of the vehicle is in the direction 

given by the vector combination of x'{ti) and y'(ti) and is tangent to the x-y curve. If 

the vehicle were moving with a steady motion along a straight line, the orientation would 

align with the direction of motion. As a first approximation for the orientation of the 

vehicle, we assume it is oriented tangent to the x-y curve. The initial estimate for the 
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orientation is given by ip(t) as 

$(t)   =   arctanfx'(*),?/(£)]. (3.1) 

The function arctan(a, b) with two arguments gives the argument of the complex number 

a + ib, so that the value of t/>(£) can range from —7r to IT. Equations (1.6) and (3.1) allow 

us to make the following initial estimate for the angular velocity f(t) as 

f(t)   =   ${t) 

x'(t)y"(t)-x"(t)y'(t) 
(3.2) 

x'2(t) + y'2(t)       ■ 

Since the vehicle is underactuated, it cannot maintain an orientation that is tangent to 

the x-y curve if the motion contains any turns. With this in mind, we can use these initial 

estimates for -0 and f along with the unactuated dynamic equation (1.2) to develop better 

estimates. 

The improved estimate for ip assumes the vehicle is turning in a circle at a constant 

velocity and corrects for the offset angle in a turn. This approach is an improvement 

over the initial estimate because it assumes the vehicle is moving along an arc of a 

circle instead of in a straight line. The following analysis is based on one presented by 

Godhavn [51] for a similar type of underactuated vehicle. 

If the vehicle is moving along an arc of a circle, we can use the following expressions 

to describe its position: 

x(t)   =   xo + —sm{rt) 

y(t)   =   yo + — [l-cos(ft)] 

where [x0, yo] is the initial position and K is the constant speed of the vehicle. We 

can view this approximation as a first-order series expansion describing the path of the 

vehicle. To fully describe the motion, we would have to include higher-order terms which 
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would improve the accuracy, but complicate the analysis.   Since we are performing a 

local analysis for a short time interval, the first-order approximation is sufficient. Taking 

derivatives of the expressions for the positions we get 

x'(t)   =   Kcos(ft)                                              (3.3) 

y'(t)   =   Ksin(ft).                                               (3.4) 

We can now solve Equations (1.4) and (1.5) for u and v and substitute x'(t) for x(t) and 

y'{t) for y(t) using (3.3) and (3.4) to get 

u(t)   «   x'(t)cos '#)" + y'{t) sin '$(t)[ (3.5) 

=   K I cos [rt] cos #)' + sin [rt] sin }(t)}} 

=   K cos rt -# )" 

v{t)   »   -z'(t)sin ^(t)   +!/'(*) cos ^(*) (3.6) 

=   K I sin [ft] cos ^(t)   -cos [ft] sin ^(t)  | 

=   Ksin \ft- -0(t) 

where we have used ^(t) as the improved estimate for the orientation of the vehicle. We 

will write tß(t) as 

where ip0(t) is the offset angle for the underactuated vehicle. This offset is similar to a 

side-slip angle for an aircraft. We also note that tp(t) = ft for a constant rate turn. We 

now have 

u{t)   =   Kcos ip{t)-i>(t) 

v(t) Ksin m - m 
(3.7) 

(3.8) 

If the vehicle is making a constant turn, the lateral velocity is not changing and we can 

make the approximation v = 0.  From a local perspective, over the short time interval 
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[ti, t\ + 6], where S is small, the lateral velocity will not change significantly, which 

further supports the approximation that the lateral acceleration is zero. Using this 

approximation, substituting (3.7) and (3.8) into the unactuated dynamic equation (1.2), 

we get 

0   =   mvuf — dvv 

=   mvKf cos('0 — xj)) — dvKsm(^ — ■0). 

Rearranging, we arrive at 

tan(i/> — ip) 
d„ 

which implies 

■0(t) = ip(t) — arctan 
mvr(t) 

dv 
(3.9) 

Equation (3.9) represents the improved estimate for the orientation of the vehicle, and 

accounts for the typical underactuated behavior as the vehicle turns. Note that if the 

vehicle is not turning, then f(t) = 0 and we recover the initial estimate for the orientation 

given by $(£). We use the new estimate for ^(t) to improve the estimate for r(t) as follows: 

m=fi(t). (3.10) 

We now have expressions for x, y, $, and f. To estimate the remaining two states, 

we can use (3.5) and (3.6) to arrive at the following expressions for u(t) and v(t): 

u(t)   =   x'(t)cos $(t)   +y'(t) fan $(t) 

v(t)   =   -x'(t) sin U(t)} + y'(t) cos U(t) 

(3.11) 

(3.12) 

Now that we have estimates for the complete trajectory q, we can make estimates 

for the two control inputs for the system by using Equations (1.1) and (1.3) and the 
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derivatives ü'(t) and f'(t): 

«i(t)   =   ü'(t)-muv(t)r(t)+duü(t) (3.13) 

ü2(t)   =   r'(t)-mrü{t)v(t)+drr(t). (3.14) 

The state estimation procedure fully exploits the information in the equations of mo- 

tion to provide an initial trajectory estimate from a polynomial x-y position curve. The 

procedure has two notable features. First, the approach develops an accurate estimate for 

the orientation of the vehicle in a turn by using the unactuated dynamic equation (1.2). 

As a result, the approach can exactly characterize motion along straight lines and arcs of 

circles. The second significant feature is that the approach provides an accurate estimate 

for the lateral velocity of the vehicle. The estimation technique finds nonzero values 

for the lateral velocity because the vehicle is not oriented tangent to the position curve. 

These two features make the trajectory estimation process very accurate and ultimately 

help produce feasible trajectories with smaller final configuration errors. 

We also emphasize that this approach can be generalized to other types of underactu- 

ated systems. Although we have focused on a specific model to illustrate the method, we 

can use the same basic techniques with other vehicles. The simulations and discussion in 

Chapter 6 will demonstrate how easily the approach can be adapted to other vehicles. 

The computations presented above outline the steps required to find the entire can- 

didate trajectory between q0 and q/. We denote this candidate trajectory by q(t). We 

also have made an initial estimate for the two control inputs, üi(t) and u^it), which we 

will denote as ü(i). Finding these estimates marks the end of the second step in the mo- 

tion planning algorithm. We now use the candidate trajectory and inputs to construct a 

feasible trajectory. 
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3.2.3    Generating the feasible trajectory 

The next step in the motion planning process is to use the inputs ü = [üi, &2]T to 

numerically integrate the equations of motion given by (1.1) through (1.6) starting at qo. 

This numerical integration will generate a feasible trajectory q(t) for the underactuated 

vehicle. If the feasible trajectory approaches the desired final configuration, then we have 

found a solution to the basic motion planning problem and can move on to the tracking 

control aspects of the problem. It is possible that the feasible trajectory will not align 

with the estimated trajectory q. Differences between the two trajectories could arise 

because the position curve is significantly different from a straight line or a circular arc. 

In addition, there will be differences because we are using the fixed initial condition q0 

to generate the feasible trajectory and it may not match the estimated initial condition. 

One way to reduce the differences between the feasible trajectory and the estimated 

trajectory is to use the estimated initial configuration q(t0) to initiate the numerical in- 

tegration. This adjustment will introduce a small error between the initial configurations 

for the actual vehicle and the feasible trajectory. If the configuration error is within the 

region of attraction for the tracking controllers, then this approach is acceptable and will 

yield a suitable feasible trajectory. To better understand when we can apply this correc- 

tion, we will examine the region of attraction for the state feedback tracking controllers 

in Section 4.6. 

There is another way to adjust the initial conditions that actually eliminates the final 

position and orientation errors, but can introduce a potentially large initial error to the 

system. Suppose we use the desired initial conditions and the estimated control inputs to 

generate a feasible trajectory that has final position and orientation errors xe, ye, and ipe. 

We can correct these errors in two steps by rotating and translating the initial conditions. 

We rotate the initial condition to eliminate the orientation error and then translate the 
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rotated system to remove the position error. We can perform this adjustment because 

the variables x, y, and tp do not enter into the equations of motion for the dynamics 

involving w, v, and r. When we apply the control inputs to the system equations with 

the modified initial conditions we will get a feasible trajectory that exactly satisfies the 

intended final position and orientation requirements and closely matches the final velocity 

requirements. Unlike the previous correction technique, this approach is model specific 

and does not always generalize to other systems. 

If either approach for adjusting the initial condition introduces a large configuration 

error, then the tracking controllers may not be able to recover from the initial error to 

reach the desired configuration. We must have another approach to reduce the potential 

differences between the feasible trajectory and the desired final configuration. Subsec- 

tion 3.2.4 introduces an iterative if°°-filter that allows us to use the vehicle's dynamics 

to improve the estimate for the trajectory, the estimate for the control inputs, and the 

resulting feasible trajectory. 

3.2.4    Iterative #°°-filtering 

If the feasible trajectory generated by the first three steps in the basic motion plan- 

ning algorithm does not approach the desired final configuration, we can use an H°°-filter 

to iteratively improve the results. The filtering approach relies on the fact that we can 

decompose the system equations into two subsystems that are each affine if the state of 

the other subsystem is known. The interlaced subsystems allow us to compute improved 

estimates for the state of the system that account for the nonlinear underactuated dy- 

namics of the vehicle. We can then use the new state estimates to update the estimates 

for the control inputs used to generate a feasible trajectory. The general approach used 
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in this algorithm is similar to the interlaced #°°-filter developed for the imperfect state 

measurement tracking controller and described in Chapter 5. 

We will derive the iterative H°°-filter starting with the equations of motion for the 

vehicle and assuming that the disturbances are not present. We have polynomials repre- 

senting the x-y positions we want the vehicle to track, but since it is an underactuated 

vehicle, it may not be able to do so exactly because the motion may be infeasible. There- 

fore, we will treat the x-y curve as an imperfect measurement of the position of the 

vehicle. We will now use this measurement of the vehicle's position and the equations of 

motion to estimate the remaining four states of the system that are consistent with the 

measurements. We let y represent the measurement vector as follows: 

y = 

- " 

X 
+ 

1   0 Wx 

y 0   1 Wy 

= Cq + Ew, xy (3.15) 

where 

q = 

c 

u   v   x   y   r   ip 

0   0   10   0   0 

0   0   0   10   0 

and wx and wy represent disturbance terms that capture the error in our measurements. 

We note that the vector q now has a special ordering for the states of the system that 

will be useful when we decompose the equations. 

To develop the if°°-filter, we will first decompose the nonlinear system into two 

subsystems with the property that each one is affine if the state of the other subsystem 
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is known. We let 

qi  = 

Q2    = 

q = 

■ " 

u   v   x   y 

r         1T 

r   ip 

qi 

q2 

Subsystem 1 is given by the four equations 

u 

x 

muvr — duu + Ui + Wi 

mvur — dvv + w2 

cos(ijj) u — sin(^) v 

sin(,0) u + cos(ip) v 

which can be written compactly as 

qi = 4n(q2)qi + ai(q2) + #iUi + DiWi. 

Likewise, subsystem 2 consists of two equations 

f   =   mruv — drr + U2 + W3 

ip   =   r 

and can be written as 

q2 = A22(qi)q2 + a2(qi) + B2u2 + D2w2. 

(3.16) 

(3.17) 
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We want to extract as much information about the nonlinear system as possible, so we 

calculate the linear portion of the affine terms ot\ and a2 as follows: 

A12 = 
dq2 

0 0 

0 0 

0 0 

0 0 

-421 = 
d«2(qi) 

9qi 

mrv   mru   0   0 

0        0     0   0 

We can now rewrite Equations (3.16) and (3.17) as 

qi   =   An(q2)q.i + Ai2Cb + [aifa) - Auch] + BiUx + DiW! (3.18) 

q2  =  -422(qi)q2 + A2iqi + [o;2(qi)-^2iqi] + jB2u2 + D2W2. (3.19) 

We can combine (3.18) and (3.19) into a single set of equations as 

-An (02)      A12 

A2i      A22(qi) 
q + 

ai(q2) -^i2q2 

«2(qi) - A2iqi 

B, 0 A 0 
+ u + 

0 B2 0 D2 

w 

where 

u 
«1 

u2 

w 
Wi 

w2 

We can then write the combined subsystem equations compactly as 

q = A(q)q + a(q) + Bu + Dw. (3.20) 

We do not know the value of q in advance, so we will use the estimate q, to be defined 

shortly, in the terms A(q) and a(q) to get 

q = A(q)q + a(q) + Bu + Dw + [A(q)q - A(q)q + a(q) - a(q)] 

Using a change of variables, we can rewrite (3.21) as 

(3.21) 

q = A(q)q + a(q) + Bu + Dw + e [a(t, q) + b(t, q)u + d(t, q)w] (3.22) 
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where e > 0 is small. We can also consider the term in square brackets in (3.21) [or 

equivalently in (3.22)] to be part of the disturbance term so that we can rewrite (3.21) 

as 

q = A(q)q + a(q)+ßu + Dw (3.23) 

where w accounts for w and the term in square brackets. 

We will take (3.23) to be the affine differential equation that describes the motion of 

the vehicle. We can measure the states x and y and want to use those measurements to 

estimate the remaining states. We will use the following i7°°-filter differential equations 

to estimate the states and compute the corresponding covariance matrix [76, pp. 298-300]: 

4   =   A(q)q + a(q)+Bu + ZCTN-\y-Cq),     q{t0) = qd(t0) (3.24) 

t   =   A(q)£ + E4T(q)-£(CTAT-1C-7-2Q)£ + DL>T,    E(t0) = Q^1. (3.25) 

In (3.24), we start the state estimate at the given desired state for the system. We could 

start the estimate at the origin, but including the known initial condition should improve 

the results. Also in (3.24), the ^4(q) matrix and the affine term a(q) depend on the state 

estimate, which is available information and allows us to capture the nonlinear dynamics 

in an affine differential equation. 

In Equation (3.24), we need to know u to compute the state estimates, but u rep- 

resents the control inputs we are trying to determine to generate a feasible trajectory. 

One way to resolve this circular problem is to use the estimate ü in place of u in (3.24). 

We can then implement the i7°°-filter to develop a new estimate for the configuration 

vector for the vehicle. With the new configuration estimates, we can use (3.13) and (3.14) 

to update the estimates for the control inputs. With revised estimates for the control 

inputs, we can repeat the #°°-filtering to again improve the results. We will run the iter- 

ative #°°-filter until the final configuration error no longer improves or a fixed number of 
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iterations has occurred. We limit the number of iterations to guarantee that the iteration 

will terminate. These new estimates for the control inputs may be an improvement over 

the previous estimates that did not use the iterative H°°-filter and could generate a more 

accurate feasible trajectory. We will use the final results of the #°°-filter to generate a 

feasible trajectory for the vehicle. We will call this feasible trajectory the desired trajec- 

tory for the tracking controllers and use a d subscript to denote the desired configurations 

and inputs. 

The motion planning algorithms use four steps to construct control inputs for the 

underactuated vehicle. The inputs generate a feasible trajectory to make the vehicle 

move from the initial configuration toward the final configuration in the allotted time. 

We will present examples of the basic motion planning algorithm in Section 6.1. Before 

we shift our focus to the tracking control problem, there are a few reasonable extensions 

to the basic motion planning problem that we should address. 

3.3    Extensions to Basic Motion Planning 

We will consider three extensions to the basic motion planning problem that rely on 

some of the fundamental techniques from the solution presented in Section 3.2. These 

extensions are to solve planning problems when obstacles are present and when other 

vehicles are in the environment, as well as to handle the minimum distance planning 

problem. As mentioned in the literature review in Chapter 2, randomized techniques 

offer promising solutions for difficult planning problems and we will rely on one random- 

ized technique to find solutions to two of the extensions to the basic problem. We will 

describe the randomized technique of rapidly-exploring random trees before we explore 

the solutions to the modified motion planning problems. 
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3.3.1    Rapidly-exploring random trees 

From the many techniques available to address the obstacle avoidance and multiple 

vehicle planning problems, we selected the rapidly-exploring random trees (RRTs) ap- 

proach developed by LaValle [41,95] as the one to use for our application. This approach 

offers the advantages of easily handling the underactuated nature of our problem, auto- 

matically accounting for obstacles, and, with minor modifications, handling the multiple 

vehicle case. As mentioned in Subsection 2.1.3, this randomized technique can provide 

practical answers to challenging planning problems, but its random nature makes it more 

difficult to prove that the approach will generate an appropriate solution. We will focus 

here on how we can use elements of the basic motion planning algorithm to improve the 

standard RRT approach and how the new technique can plan motions for underactuated 

vehicles. We will leave the detailed proofs describing the ability of the new approach to 

generate a solution as an item for future research. 

There are many variations of the RRT algorithm, so we will briefly describe the one 

that we implemented for our problem. The algorithm builds two search trees, with one 

starting at the initial configuration and the other starting from the the goal configuration. 

The trees consist of nodes that represent configurations the vehicle could achieve after 

applying an input for an incremental time step. The objective is to build the two trees 

towards each other so that they can eventually be linked to form a complete trajectory 

between the initial and goal states. The key innovation with the approach is the manner 

in which the trees are extended. At each time step, a random configuration in the space 

of all possible configurations is selected. Each state variable has an upper and lower limit, 

so there are bounds on the values for the configuration variables. The algorithm then 

searches one of the trees to find the closest node to the new configuration. The distance 

between two configurations is determined by a metric, which is a key element in the 
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design process. Once the algorithm identifies the closest node in the tree, it searches the 

list of possible inputs to find values that, in one time step, will move the configuration as 

close as possible to the new node without colliding with an obstacle. The algorithm then 

adds the resulting configuration as a new node in the tree. In addition, the algorithm 

tries to extend the tree with the new node towards the other tree. The process is then 

repeated with the roles of the trees swapped and the whole algorithm is iterated until 

the number of nodes is exhausted or the trees are connected. For additional details on 

the algorithm, see [41] or the documentation with the software. 

As mentioned above, the metric used to compute the distance between two config- 

urations is a critical aspect of the algorithm. The metric must provide a reasonable 

measure of the separation between two configurations and we must be able to compute 

it quickly, since it is evaluated many times in the algorithm. The standard metrics in 

the example models in the software can be calculated very quickly, but do not always 

provide a meaningful result for an underactuated vehicle. Likewise, the motion planning 

metrics suggested in the recent paper by Amato, Bayazit, Dale, Jones, and Vallejo [96] 

are not appropriate for an underactuated vehicle. We will describe how we changed the 

metric in the RRT software to improve the results of the algorithm and how we adapted 

the software to accommodate the extensions to our basic motion planning problem. 

3.3.2    Obstacle avoidance motion planning 

The first enhancement to the basic motion planning problem is to introduce obstacles 

into the environment. Accounting for obstacles will make the situation more realistic 

and add a significant challenge to the planning problem. For the planar underactuated 

vehicle, we will designate obstacles as regions that the vehicle is not allowed to occupy. 

We will assume the obstacles are fixed in the environment and the vehicle is not allowed 
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to contact them. The objective will be to find a feasible trajectory for the underactuated 

vehicle to track that avoids collisions with the obstacles. Our ability to control the vehicle 

will determine how close the feasible trajectory can come to an obstacle. 

We solved the problem of planning motions around obstacles by modifying the RRT 

software in the following ways. First we developed a model for the underactuated vehicle 

to capture the dynamics of the system. The equations of motion for this model match 

those presented in Section 1.4. We set upper and lower bounds on the states for the system 

by choosing extreme values from previous motion planning trials. We then developed a 

set of inputs for the system that are representative of the inputs encountered in past 

experiments. There are no disturbances in the motion planning simulations, so we did 

not have to set values for them. 

The most significant change we made to the RRT software was to the metric used to 

evaluate the separation between configurations. The standard metrics in the software are 

based on a Euclidean-type distance between the configurations. These metrics are not 

appropriate for an underactuated vehicle, because it is possible that two configurations 

could be separated by a small Euclidean distance and the vehicle would have to travel 

a relatively long trajectory to move between the two configurations. The new metric 

tries to compensate for this deficiency by including a measure of the path length for the 

trajectory the vehicle would actually follow. Given two configurations, the new metric 

computes the length of a Pythagorean hodograph curve connecting the two positions, 

with the curve having the proper tangent at each endpoint. The tangents are determined 

by the vehicle's velocity and orientation at the endpoints. The nature of the Pythagorean 

hodograph curve is such that we do not have to compute the actual polynomials for x(t) 

and y(t) to determine the path length, which helps reduce the processing time. The new 

metric sums the square of the path length with the squares of the errors in the other 

four state variables and then takes the square root of the result. This metric attempts 
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to provide a more reasonable estimate of the separation between two configurations than 

the simple Euclidean metrics, and our simulations indicate it can improve the results of 

the RRT algorithm. 

We solved an obstacle avoidance problem for the underactuated vehicle using the 

modified RRT software with both the standard metric and the new Pythagorean hodo- 

graph curve metric. Since the approach is random, we computed the solution 20 times for 

each approach to get a sample of the results. In each case, we allowed the algorithm to 

examine up to 10 000 nodes in each tree before stopping the simulation. If the simulation 

did not find a solution within 10 000 steps, we counted the trial as a failure. We note 

that, given enough steps, both approaches have a high probability of finding a solution, 

so allowing the simulations to continue would likely have generated feasible trajectories. 

We terminated the simulations at 10 000 steps to help limit the time required to collect 

the data. Table 3.1 summarizes some of the key statistics from the 20 trials and example 

solutions are shown in Chapter 6. Note that the parameter Gdist that determines the 

maximum separation between the two trees before they can be connected is different for 

the two metrics. We originally used the same value for both metrics, but the algorithm 

Table 3.1 Statistics from the solutions to the obstacle avoidance motion planning prob- 
lem using the RRT software. We used each metric to attempt to generate 20 solutions 
to the problem. We classified the trial as a failure if there was no solution after 10 000 
steps. 

Standard Metric PH Curve Metric 

Incremental time step (AT) 0.2 0.2 

Maximum separation to connect (Gdist) 0.2 0.5 

Failures 7 5 

Average nodes for 20 trials 5686.15 4284.3 

Average nodes in successful trials 4745.4 3065.3 

Average path length 15.83 11.15 

Average maximum jump 0.383 0.303 
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with the standard metric and Gdist = 0.5 would produce unreasonable solutions in which 

the vehicle would make a large position jump between the trees. In some cases, the jump 

would even pass through obstacles, so we lowered the value to improve the performance. 

The resulting algorithms had roughly the same number of failures, so the settings appear 

to be comparable. 

There are three advantages to using the Pythagorean hodograph curve metric com- 

pared to the standard metric. First, the algorithm could find solutions with fewer nodes 

in the trees, which translates into fewer exploration steps. Second, the resulting trajec- 

tories are usually shorter than with the standard metric, so the motion is more efficient. 

Finally, the maximum jump between any two nodes is usually smaller with the new met- 

ric, so the paths are smoother and it will be easier for the tracking controller to follow 

the trajectories. Note that the maximum jump is usually smaller for the Pythagorean 

hodograph curve method, even though we allowed a larger value for Gdist than with the 

standard metric. 

The 20 trials provide a fair sample of the two approaches and indicate that the 

metric based on a Pythagorean hodograph curve offers some improvements over the 

standard approaches. The new metric requires more computational time because it is 

more involved than the Euclidean metric, but the improved planning solutions may be 

worth the additional time. In addition, we have not optimized the code to compute the 

Pythagorean hodograph curve length, and enhanced programming may be able to narrow 

the gap between the two approaches. 

As a final remark for this version of the motion planning problem, we note that 

we can smooth the trajectories generated by the RRT software to improve the motion 

of the vehicle. The trajectories generated by the RRT algorithm satisfy the motion 

planning requirements, but the resulting motion may be very rough because the inputs 

are randomly selected at each time step. There are two simple methods for smoothing 
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that are based on the basic motion planning algorithm. The first smoothing method 

applies the iterative i7°°-filter to the feasible trajectory and we will refer to it as the 

filtering approach. The resulting trajectory is smoother than the original and retains 

the overall shape, so it will likely avoid the obstacles and other vehicles, as originally 

planned. In addition, the filtered trajectory does not have a discontinuity at the point 

where the two trees in the RRT algorithm are connected. Finally, the new trajectory is 

still feasible, so we can use the tracking control algorithms discussed in Chapters 4 and 5 

to follow it. 

The second approach for smoothing the original trajectory also uses elements of the 

basic motion planning algorithm. In this case, we sample the original trajectory and then 

use the basic planning algorithm to design motions between the sampled configurations. 

We will refer to this technique as the sampling approach. With this approach, the new 

segments are feasible paths and we can apply the tracking control algorithms to make 

the underactuated vehicle follow the new trajectories. It is possible that the smoothed 

trajectory could collide with the obstacles or other vehicles, but this problem could be 

corrected by sampling more points in the trajectory to maintain its shape in critical areas. 

At each transition point, we initialize the tracking controller with the final configuration 

from the previous segment to maintain continuity. The resulting trajectories are again 

very smooth and maintain the overall shapes developed in the original designs. 

The sampling approach to smoothing offers a couple of advantages over the filtering 

technique. First, with the sampling approach the resulting control inputs will be smooth 

functions of time because they are generated by the tracking control algorithm. With 

the filtering technique, the inputs were based on the randomly selected inputs generated 

by the RRT algorithm and may be difficult to implement if there is fast switching in the 

input signal. The other key advantage with the sampling approach is that we can use 

the built-in features of the basic motion planning algorithm to adjust the time interval 
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for the motion. In our implementation of the RRT software, we did not include any 

constraints to enforce a time interval on the motion. Using the sampling approach to 

smooth the motion gives us the opportunity to correct this problem, which we cannot 

easily accomplish with the filtering approach. 

3.3.3    Multiple vehicle motion planning 

We now consider the problem of planning motions for multiple vehicles in the presence 

of obstacles. The vehicles may have conflicting requirements that cause their planned 

trajectories to intersect. Our goal is to identify feasible trajectories for each vehicle 

that satisfy the motion requirements and do not cause collisions. There are two basic 

strategies for addressing the multiple vehicle problem [6]. The first approach is called 

centralized planning and works by combining the individual vehicles into a single higher- 

dimensional system and then performing planning for the larger system. This approach 

is relatively simple to implement and can use standard motion planning techniques on 

the composite system, but increasing the dimensionality of the system can drastically 

increase the computational requirements. The second main approach is to independently 

plan trajectories for the individual vehicles and then identify and resolve any possible 

conflicts. This type of planning is known as decoupled planning. The method operates 

with lower dimensional systems, so it may be able to generate solutions faster than the 

centralized approach, but there are situations where this approach may not be able to 

resolve the conflicts and fails to finds a solution. 

We considered both approaches for the multiple underactuated vehicle planning prob- 

lem and selected the centralized approach to demonstrate our results. The centralized 

approach is easier to implement than a decoupled, decentralized one, and requires fewer 

modifications to the control algorithms presented in Chapters 4 and 5. More specifically, 
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decoupled planning techniques often rely on time scaling to resolve conflicting motions. 

Making a time scale adjustment would disrupt the feedback control laws that are based 

on a solution to a generalized Riccati differential equation with a fixed time scale. 

We changed the RRT software to develop a centralized planner for multiple vehicles 

with obstacles in the environment. We implemented the approach for the two-vehicle case 

only, simply because it depicts all features of the multiple vehicle scenario, and including 

additional vehicles does not bring in anything conceptually new. We emphasize, however, 

that the time required to solve the motion planning problem grows exponentially with 

the dimension of the composite configuration space for the system [6, p. 377], so adding 

more vehicles will significantly increase the processing time. 

To modify the RRT software, we doubled the number of state variables and inputs to 

account for the second vehicle. We then replicated the dynamic equations for the second 

vehicle and established another set of initial and goal configurations. We modified the 

metric computation to include the path length for each vehicle and the sum of the squared 

errors for the velocity and orientation states. We still used Pythagorean hodograph curves 

to compute the path lengths. The two-vehicle problem required one significant change to 

the tree-building algorithm to help limit the processing time. The algorithm is the same 

up through the point where the nearest node in a tree is selected. Once the nearest node 

is identified, the algorithm selects an input at random and extends the tree using this 

input. This random selection eliminates the need to check every input to find the best 

one, which is a significant savings in processing time. Since we have doubled the number 

of inputs, we have squared the number of input combinations, and checking each one 

is a substantial processing burden. The random choice for the input does not penalize 

the ability of the tree to search for a solution, since finding the closest node is more 

important than the motion after the node is found. The final change to the software 

was to include collision checking between the two vehicles. Since the state of the system 
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includes the position of each vehicle, we can easily eliminate configurations where the 

distance between the two vehicles drops below the minimum required separation. 

We executed the modified RRT motion planning algorithm and generated viable so- 

lutions for the two-vehicle problem when obstacles were present. The vehicles avoided 

each other and the obstacles as they successfully moved from the initial states to the 

goal states. The simulation results are presented in Chapter 6 and include examples of 

smoothed trajectories using the techniques described in Subsection 3.3.2. For a compar- 

ison, we also attempted to solve this problem using the standard Euclidean-type metric. 

After several extensive experiments with trees that contained over 30 000 nodes, we were 

not able to find a solution to the two vehicle problem using the Euclidean metric. These 

results again indicate that the Pythagorean hodograph curve length is a valuable addition 

to the metric used in the RRT algorithm. 

3.3.4    Minimum distance path planning 

The final extension to the motion planning algorithms is to find the shortest trajec- 

tories that connect the initial and final configurations. Using the model presented in 

Section 1.4, we can construct a trivial solution to the minimum distance planning prob- 

lem by manipulating the two inputs to bring the vehicle to rest, orient it towards the goal 

position, move the vehicle along a straight line to the goal position, bring the vehicle to 

rest again, and then adjust its orientation. Since this trivial solution is not very practi- 

cal, we will formulate a more meaningful minimum distance problem by introducing two 

assumptions. We assume the vehicle is always moving forward with a constant velocity, 

and that is has an upper bound on how quickly it can turn. The literature review in 

Section 2.1 has discussed additional formulations of this problem. For a planar vehicle, 

this problem has a known solution where the path consists of straight line segments and 
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arcs of circles [97].   We will describe how to incorporate this solution with our basic 

motion planning algorithm. 

We can solve the minimum distance planning problem by making a slight modification 

to the basic planning algorithm. The modification is to develop a candidate position 

path composed of straight lines and arcs of circles and then approximate the path with 

a polynomial to develop explicit expressions for x(t) and y(t). The path segments would 

use seventh-order polynomials to maintain smooth derivatives at the transition points 

between line segments and circular arcs. The standard mathematical software packages, 

such as Mathematica and MATLAB, can readily compute these polynomials with built- 

in functions. This approach was originally proposed by Godhavn [51] and is a simple 

extension to the basic algorithm, which already requires polynomial expressions for x(t) 

and y(t). We can then proceed with the remainder of the basic motion planning process 

as described in Section 3.2. This solution to the minimal distance planning problem 

provides a final example of how the basic solution to the motion planning problem is 

extremely versatile and can be modified to address several common planning situations. 

3.4    Motion Planning Summary 

We have presented in this chapter a set of motion planning algorithms that generate 

feasible trajectories for an underactuated vehicle. The solutions address the basic motion 

planning algorithm, the situations where obstacles or other vehicles are present in the 

environment, and the minimum distance planning problem. The solution to the basic 

problem uses a polynomial position curve to estimate the trajectory the vehicle follows 

and incorporates an iterative if °°-filter to improve the trajectory estimate. The obstacle 

avoidance and multiple vehicle problems rely on rapidly-exploring random trees to gen- 

erate an initial solution, which can later be smoothed to find a more realistic trajectory. 
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The solution to the minimum distance planning problem uses an established technique to 

modify the basic algorithm. Now that we have techniques to create a feasible trajectory, 

we want to make the underactuated vehicle follow it. The next chapter will explain how 

we can make the vehicle track a trajectory even when there are disturbances affecting the 

system and the initial configuration does not match the expected initial configuration. 
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CHAPTER 4 

PERFECT STATE FEEDBACK TRACKING 
CONTROL 

The perfect state feedback tracking control law for the underactuated vehicle is the 

second step in the overall planning and controlling design process. The controller is based 

on i7°°-optimal design techniques applied to a linearized version of the system model and 

forces the vehicle to follow the feasible desired trajectory while attenuating the effect of 

disturbances on the system. We prove in this chapter that the solution to the linearized 

version of the problem provides a locally exponentially stabilizing control law for the 

nonlinear system, and establish conditions under which the solution is valid. In addition, 

we examine how the disturbance attenuation parameter 7 affects the performance of the 

controller. We will also discuss how the controller design technique applies equally to 

minimum phase and nonminimum phase systems. Finally, we will use two methods to 

estimate the region of attraction for the state feedback control law. 

4.1    Problem Formulation 

Our current objective is to design a control law to track a feasible trajectory and to 

reject the effect of disturbances. We will assume that the feasible trajectory has already 

been created and that we have full knowledge of the required control inputs. At this 

stage, we also assume we can use the full state vector in the feedback control law, which 
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corresponds to the perfect state measurement case. Chapter 5 will discuss how to develop 

a controller for the imperfect state measurement case. 

Using the compact notation, we recall the relevant equations for the vehicle from 

Chapter 1. The equations of motion for the vehicle are given by 

q(*) = /(*, q) + B(t)u(t) + D(t)w(t), q(i0) = qo (4.1) 

where q G Mn is the configuration of the vehicle, u G Mm is the control input vector, 

w G MP is the disturbance vector, and /(£, q) is a vector-valued nonlinear function. 

The matrices B(t) and D(t) are (possibly time-varying) matrices with the appropriate 

dimensions. The initial condition q0 does not necessarily agree with the desired initial 

configuration for the vehicle. (To keep the results as general as possible, we do not 

specialize the description of the vectors and matrices to match the model presented in 

Chapter 1. This more general description will make it easier to apply the results to other 

systems in the future.) 

The desired system uses the control inputs ud(t) from the motion planning algorithm 

to generate the feasible trajectory we want to track. The desired trajectory is represented 

by the differential equation 

c\d(t) = /(*, fid) + B(t)ud{t), qd(t0) = qd0 (4.2) 

where we assume that the initial condition q^o is known. We want the actual trajectory 

to approach the desired trajectory, so it makes sense to consider the error dynamics. If 

we subtract (4.2) from (4.1) we arrive at the equations for the error system 

QeCO = fe(t, qe) + B(t)ue{t) + D{t)w(t),        qe(t0) = qe0 (4.3) 

where qe = q - qd and ue = u - ud. Note that in (4.3) the matrices B(t) and D(t) 

are the same as in (4.1) because the control inputs and disturbances enter the equations 

linearly. 
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Tracking the desired trajectory is equivalent to finding a set of control inputs ue(t) for 

the error system to drive the error state to the origin and keep it there. If we can find these 

control inputs, then we can calculate the tracking control inputs for the underactuated 

vehicle as u = u^ + ue. Our control design approach uses linearization about the desired 

trajectory to find an i7°°-optimal controller. 

4.2    Linearized H°° Controller Design 

Our objective is to develop a control law that drives the error state qe to the origin 

even when disturbances are encountered. The tracking controller uses a relatively sim- 

ple linearization approach to achieve surprisingly good results. To our knowledge, this 

technique for underactuated vehicle tracking has not been reported in the literature. We 

start with error differential equations in (4.3) and linearize the nonlinear system about 

the origin qe = 0 to get the new system matrices 

d/e(i,qe) Ae(t) = ,        Be(t)=B(t),        De(t)=D(t). (4.4) 
qe=0 dqe 

Note that Be(t) = B(t) and De(t) = D(t) because we assumed in the problem formulation 

that the control and disturbance enter the system dynamics linearly. Also note that 

linearizing the error equations about the origin is equivalent to linearizing the actual 

system equations about the desired trajectory. We can now write (4.3) as 

qe = Ae(t)qe + Be{t)ue + De(t)w + [fe(t,qe)-Ae(t)qe], qe(t0) = qe0 (4.5) 

where the term in square brackets is the remaining nonlinear portion of the system and 

is o(|qe|), so that we have 

.im  4^1 = 0. 
|q.|->o    |qe| 
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We will start the controller design process by formulating an optimal disturbance 

attenuation problem and then modify the results to prove local exponential stability. For 

the initial design, we will ignore the nonlinear term in square brackets in (4.5), but we 

will account for it in our stability analysis. 

If we associate a quadratic performance index with the linear portion of the system 

given in (4.5), we can compute a solution to the H°° control problem and find the 

optimal disturbance attenuating controller for the linear problem. Accordingly, we select 

the performance index to be 

L(ue, w) = \qe(tf)\
2

Qf +  f ' {\qe(t)\
2

Q{t) + \ue(t)\
2} dt (4.6) 

Jto 

where Qf > 0, Q(t) > 0, and t G [io>*/]- Then, the related parametrized soft-constrained 

performance index is 

L7(iie,w) = |qe(t/)|J/+ /'{MOIQW + M^-TVWI
2
} dt (4.7) 

where 7 > 0. The solution to the H°° control problem with full state measurements 

depends on finding a unique positive definite solution Z7(i) to the generalized Riccati 

differential equation (GRDE) 

Z + A^Z + ZAe + Q - Z (BeBj - r2DeDj) Z = 0,        Z(tf) = Qf. (4.8) 

Following the development in [76], we define the infimum of values for 7 that allow a 

solution to (4.8) as 

7 := inf{7 > 0 : The GRDE (4.8) does not have a conjugate point on [0,tf]}.   (4.9) 

As we mentioned earlier, we have assumed in this development that the entire state is 

available for the feedback controller so that there is a closed-loop perfect-state information 

structure for the corresponding linear-quadratic zero-sum differential game on the time 
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interval [to,*/]- As described in [76, Appendix A], there always exists a 7* > 0 such 

that for any 7 > 7* we can find a positive definite solution to (4.8). The solution to the 

GRDE leads to a unique feedback saddle-point solution to the differential game, with 

u*(t,qe(t))   =   -BT(t)Z,(t)qe(t) (4.10) 

w*(t,qe(t))   =   r2DT(t)Z,(t)qe(t),        t>t0 (4.11) 

where u* and w* are the optimal control and worst-case disturbance, respectively. 

We can solve (4.8) in reverse time for Z7(t) because Ae depends on only the desired 

trajectory, which we assumed can be computed in advance, and we can pick 7 > 7* 

and Qf > 0 in our design. The control input u* provides an optimal controller for the 

linearized error equations (4.5), so we will set ue = u*. We construct the locally optimal 

solution for (4.1) by summing ue(£) + Ud(t) =:u(t), since we know ua(t) in advance. We 

can then apply 

u(t) = ud(t) - BT(t)Z,(t)qe(t) (4.12) 

as the state feedback controller for the full nonlinear system. 

Note that we are using the linearized controller for the nonlinear system. This con- 

troller could cause the region of attraction to shrink significantly compared to the non- 

linear state feedback controller that solves the Hamilton-Jacobi-Isaacs (HJI) inequality 

associated with the problem [76]. Using the above formulation, the corresponding HJI is 

a partial differential inequality given by 

_dV&3J    >   minmaJ^|^[/e + 5eue + Dew] + |q4 + |ue|
2-72|w|2} 

dt ueu view [     #qe J 

V(tf;qe)   =   9(qe) (4.13) 
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where V(t, qe) is a continuously differentiable value function. If we could solve this 

inequality, the optimal state feedback control law would be 

In general, for the time-varying problems we will consider, Equation (4.13) cannot be 

solved analytically, but a numerical solution is possible. We opted to use a linearization 

approach to find a reasonable control law instead of the approximate numerical solution. 

The above controller design is a relatively straightforward approach to the problem 

and the simulations in Chapter 6 will demonstrate that it leads to a closed-loop system 

with reasonable tracking performance. One deficiency with this approach is that it is 

difficult to prove global closed-loop stability for the nonlinear system. We will focus on 

the local analysis, so there is a direct proof for stability. 

Before we present the stability proof, we make one simple adjustment to the control 

law, which involves introducing an additional design parameter K,(t), which is taken to 

be positive for all t G [to,tf]: 

ue(t) = -K(t)BTZ1(t)qe(t). (4.15) 

This control law is just a scaled version of the H°° control law and offers some additional 

flexibility in the design. The modified control law also offers reasonable tracking perfor- 

mance. In Section 4.3 we will prove that (4.15) leads to a locally exponentially stable 

closed-loop system under mild restrictions on K(£). 

4.3    Local Exponential Stability 

We have already outlined the controller design process and now we want to formally 

analyze how well the proposed controller performs. To prove that the controller provides 
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reasonable tracking performance, we examine the stability of the closed-loop system 

without any disturbances. 

We will work directly with the error equations for the system and we rewrite (4.5) 

without the disturbances to get 

qe = Aeqe + Beue + o(\qe\). (4.16) 

Assume we have picked Q — ql, Qf — qjl, where q and qf are positive scalar constants, 

and 7 > 7* to solve (4.8) for Z7(i). If we apply control law (4.15) and suppress the 7 

subscript on Z7, we get the closed-loop system 

qe = (Ae - KBeBjZ) qe + o(|qe|). (4.17) 

We choose a candidate Lyapunov function 

V(t,qe) = qT
eZ(t)qe (4.18) 

and note that for all t e [to,tf] we have that V(t, qe) is positive definite and radially 

unbounded because Z(t) > 0 for t E [to,tf]. After solving for Z(t), we can also find 

real-valued functions m(t) and M(t) and constants m and M such that 

0<ml <m(t)I<Z{t)<M(t)I <MI. (4.19) 

Since Ae(t) is time-varying and depends on the desired trajectory, the functions m(t) and 

M(t) will have to be determined numerically after solving for Z(t). To show that the 

closed-loop system is locally exponentially stable, we want to show that the time deriva- 

tive of the candidate Lyapunov function (4.18) is negative definite in a neighborhood of 
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the origin. We compute the time derivative as 

V   =   qJZqe + qJZqe + qJZqe 

=   -qj [A^Z + ZAe + Q-Z (BeBj - r2DeDj) Z] qe 

+ qj (Ae - KBeBjZ)T Zqe + qJZ (Ae - K,BeBjZ) qe + 2qJZo(|qe|) 

=   -qj [Q + (2K - l)ZBeBjZ + r2ZDeDjZ] qe + 2qJZo(|qe|). (4.20) 

If we choose «(*) > \ on [t0, tf], then for all t G [t0, tf] we have 

[Q + (2« - l)ZBeBjZ + j~2ZDeDjZ] > 0. 

The remaining term in (4.20) is sign indefinite, but vanishes as |qe| approaches the origin, 

so we can use the bounds on Z and our knowledge of Q to find a neighborhood of the 

origin where V < 0. Following the approach presented by [87,88], and using routine 

arguments, we can find some e > 0 such that 

[/e(i,qe)-Ae(i)qe]    <    4^l<le|, Vqe such that |qe| < e. 

This implies that 

|2qJZo(|cu|)|    <    -g|qe 

(4.21) 

(4.22) 

Combining (4.22) with (4.20), we get 

V(t, qe)    <    -qj [Q + (2K - l)ZBeBjZ + j~2ZDeDjZ] qe + -<z|qe 

<  -?|qe|
2 + ^ihe\2 

<    _I-iv(i,qe). 
-       2 M   V       ; 

:me 

(4.23) 

Equation (4.23) leads to the following bounds on the Lyapunov function and the magni- 

tude of the state vector: 

(4.24) V(i,qe)   <   V(t0; qe0) exp 

. ,   M , , M 

|qe(i)|   <   |Qeo| \/— exp 

■Ut 
2M 

-Ut AM 
(4.25) 
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so that in an e neighborhood of the origin, we have exponential stability for the closed- 

loop system. Simulation results show that these convergence bounds for the system are 

relatively conservative. 

Several remarks about the control law are now in order. First, we have not taken 

advantage of the term [{2K - l)ZBeBjZ + j~2ZDeDjZ] in our stability analysis. This 

term is nonnegative definite for K > \ and will improve the stability of the design as 

can be seen in the inequalities preceding (4.23). A more detailed analysis of this part 

of the Lyapunov function should lead to a tighter convergence bound on the error. In 

addition, since we do not rely on this term, our stability analysis would hold even if the 

term ^ZDgDjZ was not included in the GRDE (4.8) when we solved for Z. Removing 

the ^ZDeDjZ term from the GRDE is equivalent to setting 7 = 00, in which case 

there is always a solution to (4.8) since we require Q > 0 and Qf > 0 in the design. 

The second remark is that even though we have ignored the disturbances in the sta- 

bility analysis, we expect the state feedback control law to exhibit reasonable disturbance 

attenuation properties. The reason for this expectation is that the control law closely 

resembles the optimal'disturbance attenuating control law for the linearized system and 

uses the same Z(t) matrix. If we choose K,(t) = 1, we recover the optimal disturbance 

attenuating controller. The time-varying Z(t) matrix is the key element of the design 

that provides the disturbance attenuation properties. 

We have demonstrated a form of local exponential stability for the nonlinear system. 

Our approach does not match the standard definition for exponential stability because 

we consider a finite time interval and the standard approach considers all time greater 

than a given initial time [71]. The analysis is still helpful because if the time interval 

is long enough and the vehicle approaches the desired trajectory exponentially over the 

interval, we will have reasonable tracking in finite time. One related concern is that (4.25) 

indicates that extremely large values for M could lead to large changes in qe as the vehicle 
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approaches the desired trajectory. This point will be important when we consider the 

role of parameter 7 in the control law. 

The acceptable range for n(t) is the interval [|, 00), which also appears as the allowable 

range for a design parameter used by Walsh, Tilbury, Sastry, Murray, and Laumond [88]. 

The similarity is not a coincidence and requires a brief comment. Walsh, Tilbury, Sastry, 

Murray, and Laumond find a control law for a time-varying nonlinear system through lin- 

earization and by exploiting known bounds on the controllability Gramian. The bounds 

on the controllability Gramian are equivalent to the existence of a solution to a Lyapunov 

equation. If we remove the [{2K- l)ZBeBjZ+ f~2ZDeDjZ] term from (4.8), as we did 

in the stability proof, we have a Lyapunov equation for the linearized system. Including 

the term containing Be and De in (4.8), however, allows the control law to account for 

how the inputs and disturbances enter the system, which provides additional robustness 

properties. 

The final remark is that since we are using a control law based on the linearization of 

the system, we cannot draw any conclusions about the disturbance attenuation properties 

of the closed-loop nonlinear system on a global scale. To make a statement along these 

lines, we would have to find a value function to satisfy the appropriate Hamilton-Jacobi- 

Isaacs inequality, given in (4.13). The system will maintain some disturbance rejection 

capabilities based on the choice for 7, and we explore the role of this parameter in more 

detail next. 

4.4    Disturbance Attenuation Analysis 

We are interested in how well the control law attenuates the effects of disturbances 

in the system, and the parameter 7 provides one measure of this capability. As long 

as we maintain 7 > 7*, smaller values for 7 indicate better disturbance attenuation 

71 



properties. Pan and Ba§ar [86] prove that the controller designed using the linearization 

of the nonlinear system can achieve a performance level 7 if the difference between the 

nonlinear system and its linearization is sufficiently small. This is exactly the situation in 

our case if we assume that the initial configuration errors are small. Instead of relying on 

this valuable result to characterize the disturbance attenuation properties of the system, 

this section describes how variations in 7 influence the trajectory of the vehicle. 

We originally thought that we would be able to use the special structure in the 

equations of motion to decompose the system and develop more precise results, but this 

approach is not possible for the state feedback control law. We can easily perform the 

decomposition, but the resulting subsystems are coupled and each depends on the state of 

the other subsystem. Since we are using state feedback, the associated Riccati equations 

must be solved in reverse time, starting at the final time. If we could solve the Riccati 

equations, we could compute the control inputs for the system and calculate the states 

by solving the system differential equations in forward time. We cannot execute this 

approach because the Riccati equations depend on the future system matrices, which in 

turn depend on the future error states. We cannot accurately compute the future error 

states without the controller, so we cannot use this design approach. 

We note, however, that we will use the above decomposition technique to successfully 

analyze the imperfect state measurement controller design presented in Chapter 5. The 

approach works for the imperfect state case because the system matrices depend on 

the estimated states. The differential equations to calculate the estimated states are 

computed in forward time, so we can use the state estimate in the control law and do 

not need to know the future state estimates to find a solution. 

To provide a more complete description of the disturbance attenuation properties of 

the state feedback controller, we will take a different approach. Recall that the differential 

equations for the error system are given by (4.5), where the term in square brackets is 
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nonlinear and o(|qe|). Equation (4.5) is not an approximation, because it accounts for 

the nonlinear term. We make an approximation only when we drop the nonlinear term 

and use the linear portion to solve the associated GRDE. Suppose we rewrite (4.5) as 

qe = Ae(t)qe + Be(t)ue + De{t)w, qe(t0) = qe0 (4.26) 

where we define 

De(t)w := De(t)w + [fe(t, qe) - Ae(t)qe]. 

The term De(t) represents a 6 x 5 matrix where the upper five rows are an identity 

matrix and the bottom row is all zeros. We would then select w as a vector in M5 that 

accounts for the original disturbances w and the nonlinear terms in (4.5). We note that 

this representation is again an exact description of the nonlinear system. We have only 

changed the nature of the disturbance term to make the system appear linear. 

We can now design a state feedback control law for this new representation of the 

system by following the approach in Section 4.2. The only adjustment we will have to 

make to the existing design is to change the De matrix to De in GRDE (4.8). The 

new design will be more conservative than the old design because we are accounting 

for artificial disturbances that appear because of the nonlinear terms. Relabeling the 

disturbances is similar to a step used by Kang [91] to develop disturbance attenuation 

results for a fully actuated system. This new approach allows us to precisely state the 

disturbance attenuation results for the state feedback design in terms of De and w. 

Consider the linear-quadratic zero-sum differential game given by (4.26) with perfor- 

mance index (4.6) and with the closed-loop perfect state information structure. Let the 

system be defined on the time interval [t0, tf}. Replace De by De in the GRDE (4.8) 

and in (4.11) throughout the problem. Let 7* be defined by (4.9). Then, following [76], 

for 7 > 7*, the differential game admits a unique feedback saddle-point solution which 
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is given by (4.10) and (4.11), where Z7(-) is the unique solution to (4.8). In addition, 

the minimax attenuation level is equal to 7*. For a particular 7 > 7*, the suboptimal 

controller that achieves attenuation level 7 is given by 

u;(*, qe(i)) = -BT(t)Z^t)qe(t). (4.27) 

These results provide a mathematical characterization of the performance of the perfect 

state feedback tracking controller. Along with this rigorous description of the results, we 

are also interested in the qualitative disturbance attenuation properties of the system. 

As we allow 7 to decrease to 7*, the GRDE (4.8) approaches an equation with a con- 

jugate point and the maximum eigenvalue of Z(t) increases without bound. The large 

eigenvalue in Z(t) can increase the control effort in the direction associated with the 

eigenvalue, which has two impacts on the system. First, the control law becomes very 

sensitive to errors aligned with the eigenvalue's associated eigenvector. This sensitivity 

means that small errors in this direction generate large control inputs. The large con- 

trol inputs may overcompensate for the errors and cause oscillations in the response as 

these errors are eliminated. Second, in terms of the trajectory of the vehicle, the larger 

eigenvalue can cause the vehicle to approach the desired path more quickly because of 

the increased control effort. 

As mentioned in the previous subsection, increasing the value of 7 decreases the 

role of the j~2ZDeDjZ term in (4.8). This term is improving the convergence rate 

for the system, so in general, increasing 7 will cause the vehicle to converge to the 

desired trajectory more slowly. From another perspective, increasing 7 moves the GRDE 

away from a conjugate point condition, which, for a fixed value of t, tends to decrease 

the maximum eigenvalue of Z(t). The reduced maximum eigenvalues indicate that the 

vehicle will require more time to track the desired trajectory. 
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Ideally, we would like to determine the value of 7* for a given desired trajectory, so 

that we can always pick 7 > 7*. For the problem we have developed, there is no analytical 

approach to find 7* because of the time-varying nature of the system equations and the 

matrix Ae(t). Even though we are working with the linearized system, the only way to 

find 7* is to select a desired trajectory and numerically simulate (4.8) for different values 

of 7 to search for the smallest value that provides a solution. 

By recharacterizing the disturbance, we were able to make a precise statement about 

the disturbance attenuation properties of the linearized H°° controller. We also made 

several qualitative observations about the relationship between the disturbance attenu- 

ation parameter 7 and the performance of the controller in the closed-loop system. We 

mentioned the possibility of proving additional disturbance attenuation properties by 

using the results in [86], but we will defer a more complete look at this approach until 

we consider the imperfect state measurement controller described in Chapter 5. 

4.5    Nonminimum Phase Vehicle Control 

The nonlinear model of an underactuated vehicle we have analyzed heretofore is 

minimum phase with respect to the x-y position outputs. We will demonstrate that 

the motion planning and state feedback tracking control techniques developed with this 

model will also work when applied to a nonminimum phase system. We recall that a 

nonlinear system becomes nonminimum phase when the zero dynamics associated with 

some output are not asymptotically stable [61]. To create a nonlinear model with the 

nonminimum phase property, we replace Equations (1.1) through (1.3) with the following 
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dynamic equations: 

ii   =   muvr — duu + ui + Wi (4.28) 

v   =   mvur — dvv + kvu2 +w2 (4.29) 

r   =   mruv — drr+ U2 + W3. (4.30) 

The kinematic equations for the new model are the same as (1.4) through (1.6). In (4.29), 

the parameter kv is a coupling coefficient which relates the pure torque input u2 and the 

lateral acceleration of the vehicle. This lateral force is a natural addition to a ship model 

when the thrust and rudder are located at the trailing end of the vessel. Turning the 

rudder causes a rotation as well as a slight lateral force on the ship. We should note that 

the dynamic equations for the original model described in Section 1.4 can be recovered 

from this nonminimum phase model by setting kv to zero. 

If we write the nonminimum phase equations of motion in compact form, we get 

q = f(t,q) + Bnu + Dw (4.31) 

where Bn is the new input matrix that accounts for the coupling between the rotational 

and lateral acceleration inputs. Note that the nonlinear function /(£, q) and the distur- 

bance terms do not require any changes for the new system. Since there are no changes to 

the general structure of the system, we can directly apply the controller design developed 

in Section 4.2 to the new system. 

A close inspection of the basic motion planning algorithm in Section 3.2 shows that 

we do not need to make any changes to it to handle the nonminimum phase case. We do 

have the option of changing how we estimate the control input u2, because it now appears 

in two of the equations, but it makes sense to maintain the existing approach. The change 

would be to use Equation (4.29) to estimate u2 instead of using Equation (4.30). Since 

typically both v and kv are small, errors in estimating v would translate into larger errors 
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in the estimate of «2 using (4.29) than if we use (4.30). If the coupling coefficient kv was 

large, then we could use either (4.29) or (4.30) to estimate u-z with approximately the 

same amount of error. The motion planning algorithm will account for the nonminimum 

phase behavior in the system through the iterated #°°-filter, which relies on Bn. In 

summary, to adapt the motion planning algorithm for this nonminimum phase nonlinear 

system, we just need to adjust the input matrix in the if°°-filtering equations. 

The nonlinear function f(t, q) has not changed, so there is also no change in the lin- 

earization of the error system, except for the input matrix Bn. The system has maintained 

the same general structure and we can use the linearized system to find the i7°°-optimal 

controller. We solved for the linearized controller, applied it to the nonlinear system, 

and simulated the closed-loop behavior of the model. Chapter 6 reports on the positive 

results of using the state feedback tracking control algorithm with a nonminimum phase 

system. 

The tracking controller works for both the minimum and nonminimum phase nonlin- 

ear systems because the H°° controller is inherently robust and the differences between 

the two systems are relatively small. In addition, the designs fully account for the new 

input matrix, which captures the nonminimum phase behavior. If the coupling between 

the rotational and lateral accelerations was very large or if there was a different type of 

nonminimum phase behavior, then we might expect a decrease in the performance of the 

tracking controller. 

From this brief analysis of a single system, we can project that the motion planning 

and state feedback tracking controller algorithms can accommodate nonminimum phase 

systems. The details of how we implement each algorithm will have to be tailored for 

each new system, but the general approach and the overall results should remain the 

same. 
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4.6    Region of Attraction Analysis 

Our final investigation in this chapter considers the region of attraction for the closed- 

loop system with state feedback tracking control. The region of attraction is the set of 

initial conditions from which the tracking controller can cause the vehicle to approach the 

desired final configuration within the specified time interval. We have two methods for 

estimating the region of attraction for the nonlinear model of an underactuated vehicle. 

The first method uses the proof of local exponential stability presented in Section 4.3 to 

develop an analytical description of the region of attraction. The second approach uses 

numerical simulation to search a range of initial conditions to estimate the region. The 

following two subsections describe each approach and the results. 

4.6.1    Analytical description 

One way to make a definitive statement about the size of the region of attraction for 

a nonlinear system is to find a Lyapunov function for the system and a corresponding 

region where the derivative of the Lyapunov function is negative definite. We can then 

estimate the region of attraction as the largest level set of the Lyapunov function that 

is within the region where the function has a negative derivative. This estimate for 

the region of attraction is a lower bound for the actual region and may be extremely 

conservative. This approach may not fully describe the shape of the region, but it does 

provide a direct method for developing analytical results. We will present the key steps 

required to find a lower bound on the region of attraction for the underactuated system. 

We will first identify the set of configurations that guarantee that the Lyapunov 

function has a negative derivative. From Section 4.3, the key inequality that must be 

satisfied to obtain local exponential stability is given by Equation (4.22), which we rewrite 
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here with slightly different notation: 

\2q]Z[fe(t,qe)-Aeqe]\    <   ^|qe| (4.32) 

where Z is the solution of the generalized Riccati differential equation for the linearized 

system and the matrix Q = ql is part of the performance index. Recall that we are 

working with the error equations, which are denoted with an e subscript. Our goal is to 

find a value of £ such that qe satisfies (4.32) whenever |qe| < e. 

To perform the analysis, we require bounds on the positive definite matrix Z{t), in 

the form 

0 < ml < Z{t) < ML (4.33) 

The generalized Riccati differential equation used to find Z(t) depends on the matrix 

Ae(t), which in turn depends on the desired trajectory the system is trying to track. We 

cannot place a meaningful bound on Ae(t) without restricting the desired trajectories for 

the system. If we did restrict the set of desired trajectories to get a bound on Ae(t), the 

set would likely be too small to account for many reasonable motions. As a compromise, 

to complete the analytical description of the region of attraction, we will have to resort to 

a numerical estimate for the bounds on Z(t) given by (4.33). Given a desired trajectory, 

we can compute Z(t) and then solve for M and m as, respectively, the largest and 

smallest eigenvalues of Z(t) for all t e [t0,tf\. We will use the estimated bounds on Z(t) 

to describe the region of attraction for the specified desired trajectory. We will have to 

find new values for M and m for each desired trajectory of interest. 

To convert the inequality (4.32) into a bound on the initial condition for the system, 

we used the Zi variables to represent the position and orientation of the vehicle instead of 

the x, y, and ip variables. The z; variables simplify the equations of motion and allow us 

to perform some cancellations to reach a compact expression for the region of attraction. 
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Using (4.33), we can show that (4.32) is equivalent to 

\c£[fe(t,qe)-Aeqe]\    <    -^ |qe|
2 

4M 
(4.34) 

With the Zi variables, we have 

[fe(t, qe) - Aeqe muvere   mvuere   mrueve   z2ere   -zlere   0 

where mu, m„, and mr are the mass parameters in the equations of motion. Expanding 

both sides of (4.34), we get 

1 (mu + mv + mr)uevere\   <   -^ \u\ + v\ + r\ + z{e + 4- + z\eI 
4M 

which leads to 

\uPvPrP\   < \u\ + v\ + r\ + z\e + z\e + 4,1 (4.35) 
4M \mu + mv + mr 

Suppose we restrict |qe| < e < 1, for some e > 0, and then we maximize the left-hand 

side of (4.35) subject to |qe| < e. The maximum occurs when ue = ve = re = -4=. Using 

the constraint on qe, we also have |qe|
2 < e2, so we can rewrite (4.35) as 

< 
qe" 

3^/3 4M \mu + mv + mr 

which simplifies to 

e   < 
3qV3 

(4.36) 
4M \mu + mv + mr\ 

We now set e equal to the right-hand side of (4.36), because it is the largest value that 

allows us to claim that qe satisfies (4.34) whenever |qe| < e. Therefore, the region defined 

by 

|qe 
< 

3qV3 
4M \mu + mv + mr 

=■    QB (4.37) 
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is a conservative estimate for the region of initial conditions that guarantee that the 

Lyapunov function will maintain a negative derivative along the associated trajectory. 

We will now find a level set for the Lyapunov function within this region. 

A level set is the collection of configurations such that we can place an upper bound 

on the value of the Lyapunov function. We recall that the Lyapunov function is V(qe) = 

q£Zqe and define the level set as 

Üc := {qe e M6 | V(qe) < c} (4.38) 

where c is a parameter describing the level. Using the lower bound in (4.33) and (4.37) 

and following the standard arguments in [71], we can select 

■      v(    \ 27mq2 

c   <      mm    V{Qe)   =   ^, TO i r- 
|qe| = gmax 16M2 \mu + mv + mrI 

With this value for c, the region defined by Qc provides an estimate for the region of 

attraction for the system and describes the set of initial conditions that will generate 

trajectories approaching the goal configuration at the required time. 

We performed three simulations of typical motions to determine bounds on the matrix 

Z(t) and found that choosing m = 0.2 and M = 20 would be sufficient in all three cases. 

We also chose q = 1 and picked values for mu,mv, and mr such that \mu + mv + mr\ = 1. 

These desired trajectories and parameter choices result in a numerical value of e = 0.065 

and c = 0.0008. These values for e and c indicate that the initial error magnitude must 

be very small to guarantee that the tracking controller will cause the vehicle to approach 

the desired final configuration. The estimate is extremely conservative because we are 

using the worst-case bound on the matrix Z(t). As the vehicle moves, the upper bound 

on Z(t) will often be less than MI, so using the maximum upper bound contributes to 

the conservative nature of the estimate. To find a more accurate estimate for the region 

of attraction, we will use a numerical approach. 
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4.6.2    Numerical description 

The numerical approach for estimating the region of attraction is a brute force tech- 

nique that scans a set of initial conditions and determines which of them lead to tra- 

jectories that approach the desired final configuration. To reduce the dimension of the 

search space, we assumed the desired trajectory generated by the motion planning algo- 

rithm had no initial position error. This assumption is valid when we use the version of 

the motion planning algorithm described in Subsection 3.2.3 that generates the desired 

trajectory starting from the estimated initial conditions. With no error in the position 

variables, we only have to vary the remaining four states to characterize the region of 

attraction, which significantly reduces the computational requirements. 

We applied the motion planning algorithm starting at q = [1, 0, 0, 0, 0, 0]T and mov- 

ing to [1, 0, 0, 8, 8, 0]T, to generate the desired trajectory for the first set of simulations. 

Using this desired trajectory, we computed Z(t) for the entire time interval. We then 

selected an initial condition and applied the state feedback control law to simulate the 

motion of the vehicle. With this desired trajectory, we performed three simulations with 

different sets of initial conditions. The initial conditions were 

1. ue(to), ve(t0), re(t0) G [-2, -1.5, -1.0, -0.5, 0.0, 0.5, 1.0, 1.5, 2.0], 

^e(*o) e [-7T, -37I-/4, -TT/2, -TT/4, 0, TT/4, TT/2, 3TT/4, TT]. 

2. ue(t0), ve{t0), re(to) G [-1, -0.8, -0.6, -0.4, -0.2, 0.0, 0.2, 0.4, 0.6, 0.8, 1.0], 

i/)e(to) G [-7T, -471-/5, -37I-/5, -2TT/5, -TT/5, 0, TT/5, 2TT/5, 3TT/5, 4TT/5, TT]. 

3. ue(*o), *>e(*o), re{t0) G [-0.5, -0.4, -0.3, -0.2, -0.1, 0.0, 0.1, 0.2, 0.3, 0.4, 0.5], 

V>e(*o) G [-TT/2, -27I-/5, -37T/10, -TT/5, -7I-/10, 0, TT/10, TT/5, 3TT/10, 2TT/5, TT/2]. 

The first two sets of initial conditions led to trajectories that did not converge to the 

desired final configuration. However, in the third set, all of the initial conditions generated 
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trajectories that approached the desired configuration. We can thus conclude that for this 

desired trajectory and within the resolution of this numerical computation, the region of 

attraction is between the second and third sets of initial conditions. We can therefore 

use the third set of initial conditions to form a conservative estimate for the region of 

attraction. Although this estimate is conservative, it is an order of magnitude larger than 

the analytical estimate for the region of attraction developed in Subsection 4.6.1. 

To further support these results, we checked the third set of initial conditions given 

above with the two other desired trajectories considered in the analytical estimate for the 

region of attraction. In both cases, all of the initial conditions in the third set generated 

trajectories that converged to the desired final configuration. 

The numerical approach for estimating the region of attraction is inherently limited 

because we can only survey a small number of initial conditions and desired trajectories 

within a reasonable amount of time. Improving the resolution of the description of the 

region of attraction or finding its exact boundary are computationally expensive tasks 

that may not be worth the effort. The region of attraction described by the third set of 

initial conditions is reasonably large for the types of simulations we have considered and 

indicates that the state feedback tracking controller provides a practical solution to the 

nonlinear underactuated vehicle control problem in many situations. 

4.7    Perfect State Feedback Summary 

The perfect state feedback controller design provides the initial approach for making 

an underactuated vehicle track a feasible desired trajectory while rejecting the effect of 

disturbances. The approach relies on linearization and H°° design techniques to develop 

the controller. We have demonstrated that the closed-loop system achieves local expo- 

nential stability, and we have characterized the disturbance attenuation properties of the 
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system. In addition, we have explained how the approach can apply to nonminimum 

phase systems and used two methods to estimate the region of attraction for the closed- 

loop system. As will be illustrated in Chapter 6, the approach provides exceptionally 

good tracking performance when the full state is available for feedback. When the model 

does not allow us to access the entire state for feedback, we need another approach to 

develop the controller. We will address this imperfect state measurement case in the next 

chapter (Chapter 5) by using a state estimate in the state feedback control law. 
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CHAPTER 5 

IMPERFECT STATE MEASUREMENT 
TRACKING CONTROL 

The controller developed in Chapter 4 relies on perfect state measurements for the 

feedback law. In a realistic situation, the entire state for the system cannot generally be 

measured. In our example of an underactuated ship, we can expect to directly measure 

the position and orientation of the vehicle, but not the velocities. In addition, the 

position and orientation measurements will likely be corrupted by disturbances, which 

we will have to account for in the analysis. We will now modify the controller designed 

in the previous chapter to handle the imperfect state measurement case. We still rely on 

the H°° design tools to obtain a controller, and will exploit an existing unique structure 

in the model of the underactuated vehicle to achieve the desired results. The approach 

will allow us to prove a modified version of disturbance attenuation for the closed-loop 

system. 

5.1    Problem Formulation 

The problem formulation for this chapter is similar to that for Chapter 4. As before, 

we want to determine the control inputs to cause the underactuated vehicle to track a 

feasible trajectory and attenuate the effect of disturbances. The control law will have 

access only to imperfect measurements of the position and orientation states. The feasible 
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trajectory will be constructed in advance and the controller will be able to use the inputs 

that generated the trajectory. 

We will use the same equations for the actual, desired, and error systems as presented 

in the previous chapter in (4.1) through (4.3). We note that the error equation (4.3) has 

an equilibrium point at the origin when there are no disturbances present. We introduce 

the measurement equation 

y(t) = C(t)q(t) + E(t)w(t) (5.1) 

where y G JRq and C(t) and E(t) are matrices of the appropriate dimensions. Our 

approach will be to use the measurements y(t) to estimate the full state of the system 

q(i) and then substitute the estimate for the actual state in the feedback controller 

developed in Equation (4.12). We will denote the estimate for the state as q. 

5.2    #°°-Filter Design Using System Decomposition 

The first step in this design process is to use the structure of the model for the 

underactuated vehicle to write the equations of motion in a more convenient format. The 

nonlinear error equations for the vehicle can be decomposed into two sets of equations, 

where each equation is affine if the state of the other subsystem is known. For this 

analysis, we will suppress the e subscript on the error equations. The equations for the 

two subsystems are given as 

qi   =   ^n(q2)qi + 0!i(q2)+ßiUi + DiWi (5.2) 

q2   =   A22(qi)q2 + a2{qi) + B2u2 + £>2w2 (5.3) 

where 

qi 

q2 

u 
u2 

w = 
Wi 

w2 

(5.4) 
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For our model, we have 

qi u   v   x   y q2 = r   ift 

Ui = Ui, u2 = u2 

T 

Wi Wi    w2 
,        w2 = w3. 

The Q!j(qj) terms are nonlinear and we would like to identify a first-order approximation 

for each term to further simplify (5.2) and (5.3). To do so, we take the Jacobian of the 

Qfi(qj) terms with respect to q; to identify the linear portions 

A 12 
dai(q2) 

3q2 
A2i = 

0a2(qi) 

q2=o 9qi qi=0 

We now rewrite the subsystem equations as 

qi   =   ^n(q2)qi + ^4i2q2 + [aifaa) - A12q2] + #iUi + Awi (5.5) 

q2   =   A22(qi)q2+^2iqi + [o;2(qi) - A2iqi] +B2u2 + D2w2. (5.6) 

Combining the subsystem equations, we arrive at 

q = 
qi ^ii(qa)      ^12 qi 

+ 
cui(q2) - Ai2q2 

q2 A2i      A22(qi) q2 a2(qi) -A2iqx 

+ 
Bi    0 

0    B2 

Ul 

u2 

+ 
D1    0 

0    D2 

Wi 

w2 

which we write compactly as 

q = A(q)q + a(q) + Bu + Dw. (5.7) 

We note for future reference that a(0) = 0 in the systems under consideration.   This 

property indicates that the transformations have not disturbed the equilibrium point at 
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the origin for the error equations. We are going to estimate the state q using y so we 

rewrite (5.7) as 

q = A(q)q + a(q) + Bu + Dw + [A{q)q - A{q)q + a(q) - a(q)] (5.8) 

where the estimate q depends on past measurements yyto,t] '■= {yij) '• T £ [*o>*]}- 

We can consider (5.8) as an affine system with time-varying elements and a nonlinear 

perturbation term in square brackets. We would like to derive results similar to those by 

Pan and Ba§ar [86] to establish attenuation of disturbances for this system. To mimic 

the problem presented in [86], we rewrite (5.8) as 

q = A{q)q + o(q) + ßu + Hw + e [a(t, q) + b(t, q)u + d(t, q)w]. (5.9) 

Equation (5.9) is similar to Equation (la) in [86], with the difference being that (5.9) 

contains the affine term a(q). We can develop a disturbance attenuating controller with 

the affine term in the equations if we make one assumption and minor modifications to 

the derivation in [86]. Section 5.3 presents the controller design and outlines a proof of 

disturbance attenuation for the closed-loop system. 

5.3    Disturbance Attenuating Controller 

Our objective is to find a control law based on the imperfect state measurements 

in (5.1) that achieves disturbance attenuation level 7 for the nonlinear system (5.7). 

If (5.9) did not have the affine term, we could apply the results in [86] almost directly to 

get the desired performance level. The affine term in (5.9) creates one difficulty that must 

be addressed to reach a meaningful conclusion about disturbance attenuation. Due to the 

presence of the affine term, we cannot prove the standard disturbance attenuation results, 

but we can find a finite bound for the upper value of the associated soft-constrained 
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dynamic game. This upper bound allows us to prove a modified form of disturbance 

attenuation. We now present the controller equations that solve this problem and describe 

how they achieve a specified level of disturbance attenuation. 

We form the candidate control law by replacing the actual state in Equation (4.10) 

with the estimate for the state q to get 

where q is generated by 

4 = [A - (BBT - -y-2DDT)Z]q + a(q) + [/ - T^E^E^A^y - Cq),   q(i0) = 0 

(5.11) 

with E satisfying the following i?°°-filter error covariance equation: 

E = AE + EAT-E(CTA^-1C-7-2Q)E + JDDT,    E(t0) = [Qo - rjl]'1        (5.12) 

where Q(t) > 0, Q0 - rjl > 0, r? > 0, and N{t) := E(t)ET{t) > 0. The performance 

index associated with the imperfect state measurement case is 

L(u,w,q0;£)    =     /"' [|q(t)|2Q + |u(t)|2 + £(9(t,q(i)) + uT(t)r(t,q(t))u(t))]di 

+|q(*/)lgy- (5-13) 

We will assume that the initial state is unknown and treat it as part of the disturbance. 

The associated zero-sum differential game has the following soft-constrained cost func- 

tion: 

L7(u,w,q0;e) - L(u,w,q0;e) - 7
2 (MQ0 + ||w||2). (5.14) 

We apply control law (5.10) to (5.9) and to the performance index (5.14), and obtain 

equations similar to Equations (37) and (38) in [86].  For brevity, we repeat the short 
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versions of these two equations here: 

4   =   F(t)q + ß{t) + G{t)w + e[f(t,q)+g{t,q)w},    q{t0) ,   (5.15) 
x0 

0 

LI   =   -72q?Ooqo + qT(*/)0/q(*/) (5-16) _      2^T/=i ^     ,   ^T 

+ /     [qTF(t)q - 7
2wTw + eh(t, q)] d< 

•/in 'to 

where q := [qT,qT]T. In (5.9) the A(q) and a(q) terms depend on q, which implies 

that the terms F(t) and ß(t) in (5.15) depend on q. We observe that q depends on y, 

which in turn depends on w, so w enters into the expression for q through F(t) and ß(t). 

We will shortly perform a maximization with respect to w and q0, which will have to 

account for this relationship. We make the following assumption to address this aspect 

of the problem. 

Assumption 5.1 (A5.1) The effect of the disturbance term w on the terms F(t) and 

ß(t) is small enough that the upper value of the performance index L* remains bounded. 

Our concern with the effect of w on q stems from the performance index (5.16), 

where q makes a positive contribution to the cost. For a fixed value of 7, if w has a large 

influence on q, it would be possible for the disturbance to choose a value to make the 

integrand in the cost function arbitrarily large. On the other hand, if w has a negligible 

effect on q, then the -72wTw term will dominate any positive contribution w makes 

through qTH(t)q, and the upper value of L* will remain bounded. 

Assumption A5.1 is reasonable if a large change in the disturbance does not cause a 

significant change in the values of F(t) and ß(t). In other words, F(t) and ß(t) should 

be relatively insensitive to w. If this is the case, then a large value of w will affect 

q primarily through the G(t)w term and not the F(t) or ß{t) terms. (Note that the 

optimization problem will account for the role of G(t)w through a Riccati differential 
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equation to be presented shortly.) Equivalently, if the role of w is small enough that it 

can be modeled as part of the e disturbance in square brackets in (5.15), then we can 

find a value for 7 to keep the upper value of the performance index finite. To further 

support this assumption, the simulation results in Chapter 6 will demonstrate for the 

model system that changes in w have a small effect on F(t) and ß(t) and, hence, there 

still exists a finite upper bound for performance index L*. 

With Assumption A5.1 in place, we now want to find an upper bound for the value 

function of the maximization problem 

sup    sup L*(w,q0) (5-17) 
qo£JRn w£Wm 

subject to the constraint (5.15) and with Hw representing the class of admissible distur- 

bances.1 We start by separating the supremum operations to get 

sup    sup L*(w,q0)    <     sup <-72q^Q0qo 

+  sup \qT{tf)Qfq(tf) + [ ' [qTH(t)q - J2wTw + sh{t, q)] dt\ 1.   (5.18) 
WEHW *■ Jto J J 

Following Pan and Basar [86], we focus on the inner maximization and define 

Z7(w,q0):=  sup  \qT(tf)Qfq(tf)+ [' [qTH(t)q-j2wTw + £h(t,q)]dt\.   (5.19) 
weHw I Jto ) 

If e = 0, this problem admits a maximum q1\to)E(t0)q(t0) + CT(*o)q(^o) + m(t0) where 

E(t) is the nonnegative definite solution to the following GRDE: 

E + FTE + EF + 7-
2SGGT» + H = 0,    E(tf) - Qf (5.20) 

and ((£) and m(t) satisfy the following differential equations: 

C + 2Zß + FTC + 7-
2HGGTC = 0,    C(*/) = 0 (5.21) 

m + (Tß + -^(TGGT( = 0,    m(t/) = 0. (5.22) 

LHere, %w is the Hilbert space of square-integrable functions on [t0, tf], taking values in Mp. 
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These last two equations are a result of the affine term ß in the constraint equation 

for the maximization problem. To demonstrate a disturbance attenuation level of 7, we 

follow the proof in [86] and consider the following GRDE when e > 0: 

Es + FTES + ESF + r2^sGGTE5 + H + 5I = 0,    Es(tf) = Qf (5.23) 

where S is a small positive scalar. Equation (5.23) has a solution for sufficiently small 

ö > 0. Let Q and ms be the solutions to (5.21) and (5.22), respectively, with E replaced 

by E$. Partition Eg and Q as 

3«(i) 
Esu(t)   Eöi2{t) 

Es2l(t)     Eg22(t) 
(s(t) = 

Cs2(t) 

Skipping some of the details in the paper [86], we can show that 

Esn(to) < rS_1(*o) + TV = YQo- (5.24) 

For a fixed S > 0, the function qTS,5(£)q is an upper bound for qTS(t)q in the maximiza- 

tion problem (5.17). This result implies 

sup  (qT(i/)Q/q(t/) + / ' [<f#(*)q - 7*wTw + eh(t, q)] dt) 
wenw I Jto ) 

<   qT(t0)S*(*o)q(*o) + (J(h)<l{to) + ms(t0). (5.25) 

We now consider the complete maximization problem in (5.18) to get 

sup    sup L*    <     sup  {-J2qoQo^o + qLlEs(t0)q0 + Cj(t0)q0 + ms(t0)} 
q.0emn vfeHw q0eiRn 

=     sup  {-72qjQoqo + qJSm(t0)qo + C£(*o)qo + m5{t0)} 
qo€iRn 

]cl(to) [l2Qo ~ Esn(to)]   X Csiik) + ms(t0). (5.26) 

At this point, we cannot make any statements about the disturbance attenuation level 

for this system because the right-hand side of (5.26) could be greater than zero. We know 
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that the right-hand side of (5.26) is bounded because (5.21) and (5.22) lead to bounded 

values for Ctfi(*o) and ms(to). Let M > 0 represent an upper bound for the right-hand 

side of (5.26). Then, 

sup    sup L*    <   -C7i(to)[72Qo-Sm(to)]_1Gi^o) + mä(io)   <   M 

=> sup    sup {r-72(|q0||0 + ||w||2)}   <   M. (5.27) 

Inequality (5.27) implies that the difference between L* and 72 (|qo|g0 + Ilwl|2) IS always 

bounded by a fixed value. This translates into a condition relating the rates of growth for 

L* and the disturbance terms. The costs on the state plus control cannot grow at a faster 

rate than the disturbances. This result is a modified form of disturbance attenuation for 

the nonlinear system. We note that it is possible that the right-hand side of (5.26) 

could have an upper bound of zero, in which case we achieve disturbance attenuation 

level 7, using the standard meaning of the phrase. (Recall that a(0) = 0, which implies 

ß(t0) = 0. If ß(t) = 0, then the affine term vanishes, Equation (5.15) becomes linear, and 

the maximization preceding (5.26) becomes negative by construction, as shown in [86].) 

Since, in general, we have to account for the affine terms which are sign indefinite, we 

can only guarantee the modified form of disturbance attenuation. 

The portion of the proof that shows that we cannot find a controller to achieve a 

performance level of 7 for 7 < 7*(0) is similar to that presented in [86] and is not 

repeated here. 

Our analysis above has thus designed a control law for the imperfect state measure- 

ment case and proven a form of local disturbance attenuation for the closed-loop system. 

We will simulate the system with this controller in Chapter 6 to verify its effectiveness 

as a tracking controller. 
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5.4    Analysis of Controller Design 

We now provide in this section a more detailed analysis of the imperfect state mea- 

surement controller in terms of its disturbance attenuation properties. In addition, this 

section introduces the problem of proving local exponential stability for the closed-loop 

system using a separation principle argument. Although we are able to elaborate on the 

ability of the system to attenuate disturbances, we will leave the establishment of local 

stability results as an open research problem. 

The imperfect state measurement tracking controller depends on the solution to two 

generalized Riccati differential equations [one for Z(t) and one for £(£)] and one ordinary 

differential equation for the estimate of the state q(t). We selected this approach because 

of the disturbance attenuation characteristics and the inherent robustness properties 

that arise from H°° techniques. In addition, the approach provides a direct method 

for computing the control law. The resulting controller is based on a linearization of 

the original system, so we can prove only local disturbance attenuation results for the 

closed-loop system. 

One way to provide a more complete description of the disturbance attenuation prop- 

erties of the system is to solve the Hamilton-Jacobi inequalities associated with the full 

nonlinear time-varying problem. A general analytical solution for these inequalities is 

not readily available for the types of systems we are considering, and in fact may be 

impossible to obtain. Numerical solutions may certainly be possible, but we decided not 

to pursue this computationally expensive option. 

Another way to characterize the disturbance attenuation results is to rewrite (5.8) as 

q = A(q)q + a(q) + .Bu + Dw (5.28) 
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where 

Dw = Dw+ [A(q)q - A(q)q + a(q) - o(q)]. 

This representation parallels the one presented in Section 4.4 and allows us to show 

that the design leads to an optimal disturbance attenuating controller with respect to 

disturbance w. As mentioned before, this approach leads to a more conservative controller 

because the new disturbance w is accounting for the remaining nonlinearities in the 

system. However, this characterization offers a simple alternative to the more complete 

description of the disturbance attenuation properties presented in Section 5.2. 

A second reasonable goal for the imperfect state measurement controller design, which 

we will not pursue here, is to prove local exponential tracking for the nonlinear system 

using a separation principle. The separation principle allows us to individually design a 

state feedback controller and a state estimator, and then combine the results to form an 

output feedback control law. The separation principle holds in general for linear systems, 

but it must be demonstrated for each nonlinear system. We have shown that the perfect 

state feedback tracking controller is locally exponentially stable, which is the first step 

in proving the results for the imperfect state measurement case. We have also shown 

that the closed-loop imperfect state measurement controller achieves local disturbance 

attenuation, which may be helpful in establishing the separation principle. 

To complete the proof of local exponential tracking, we suggest advancing the recent 

results on cascaded systems by Loria, Fossen, and Panteley [98] to develop a separation 

principle for nonlinear underactuated systems. There are two key challenges with the 

approach in [98] that must be resolved in order to apply the results to our problem. 

First, the authors designed a controller for a fully actuated system, so the results will 

have to be modified to handle the underactuated case. The second challenge is that the 

control law in [98] is a proportional-integral-derivative controller, which greatly simplifies 
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the analysis of the closed-loop system. The system using the H°° controller is more 

mathematically involved, because it relies on coupled differential equations to compute 

the control law. Even though the computations are more involved for the H°° case, the 

approach is well understood and there are techniques to analyze the controller, which 

should lead to a separation principle for the nonlinear underactuated system. Having 

formulated this problem and outlined one solution approach, we plan to leave this issue 

as an open research area for future work. 

5.5    Imperfect State Measurement Summary 

This chapter constructed an imperfect state measurement tracking controller by com- 

bining an i7°°-optimal state estimate with the perfect state feedback controller developed 

in Chapter 4. Using recent results on the robustness of minimax controllers to nonlinear 

perturbations [86], we were able to prove a form of disturbance attenuation for the closed- 

loop system. The imperfect state measurement tracking controller is the final element in 

the design for planning and controlling the motion of an underactuated vehicle. We are 

now in a position to combine all of the elements and demonstrate how well they perform 

through a series of simulations. 

96 



CHAPTER 6 

SIMULATION RESULTS 

This chapter presents the results of simulations that implement the motion plan- 

ning, the perfect state feedback control, and the imperfect state measurement control 

algorithms described in Chapters 3, 4, and 5. We will explain the details behind each 

simulation and comment on the results. 

Except where noted, for most of the simulations we used the following values for the 

coefficients in the underactuated vehicle model given by (1.1) through (1.3): 

mu = 0.5,        mv = —2.0,        mr = 0.5 

du = 1.0,        dv = 2.0,        dr = 1.0. 

These parameter values represent a scaled realistic model. When we report a configura- 

tion for the system, the order of the variables will be [u, v, r, x, y, ip]. 

6.1    Motion Planning 

Motion planning is the first step in controlling the underactuated vehicle. The tech- 

niques presented in Chapter 3 allow us to move the vehicle between a variety of con- 

figurations and generate very reasonable trajectories. The simulations presented in this 

section illustrate the results of the motion planning algorithm with a sample of the types 

of motions that can be generated. 

97 



6.1.1    Basic motion planning examples 

We applied the basic motion planning algorithm to five example problems to demon- 

strate its features. The first example shown in Figure 6.1 illustrates how the iterative 

i?°°-filter helps improve the feasible trajectory and make the vehicle's final configuration 

approach the goal configuration. In this example, we left the initial configuration of 

the vehicle as its actual configuration for the motion planning algorithm. This design 

choice appears in Figure 6.1 as a difference between the candidate position curve (dotted 

line) and the feasible planned position curves along the initial segment of the path. This 

difference does not diminish as the iterative #°°-filter operates on the system. 

y 

Figure 6.1 Basic motion planning results using the iterative i7°°-filter. The dotted line 
shows the candidate polynomial position curve, the solid line shows the first feasible 
trajectory, and the dashed lines show the feasible trajectories as the #°°-filter iterates 
on the results. 
Initial Configuration:    [1, 0, 0, 0, 0, 0] 
Goal Configuration:      [1, 0, 0, 8, 8, 0] 
Final Configuration:     [1.00, 0.10, -0.09, 7.89, 7.81, -0.06] 
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As described in Chapter 3, we can reduce the initial error between the candidate 

position curve and the feasible position curve by using the estimated initial conditions to 

plan the vehicle's motion. Figure 6.2 shows the results of applying this technique. In this 

case, we did not have to apply the iterative iy°°-filter to achieve a small final configuration 

error. Figure 6.3 illustrates the second method for correcting the initial configuration to 

improve the results. In this example, we developed a motion using the iterative iJ°°-filter 

and the actual initial configuration and then shifted the initial orientation and position 

to completely eliminate orientation and position errors at the final configuration. The 

amount by which we shift the initial configuration is relatively small and, if it falls within 

the region of attraction for the tracking controllers, we will be able to follow the new 

feasible trajectory. Table 6.1 summarizes the initial and final configurations for the first 

three motion planning examples, 

y 

Figure 6.2 Basic motion planning results using the estimated initial conditions. This 
example did not use the iterative #°°-filter. The final planned configuration is very close 
to the goal configuration. 
Initial Configuration:    [0.99, -0.12, 0.15, 0, 0, 0.12] 
Goal Configuration:      [1, 0, 0, 8, 8, 0] 
Final Configuration:     [0.99, 0.10, -0.10, 7.92, 7.94, -0.12] 
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(a) 

(b) 

Figure 6.3 Basic motion planning results with the corrected initial configuration. 
Part (a) shows the original position curve and part (b) shows the curve after the correc- 
tion. Note that the values for the final planned position and orientation exactly match 
the corresponding values in the goal configuration. 
Initial Configuration:    [1, 0, 0, 0.55, -0.23, 0.06] 
Goal Configuration:      [1, 0, 0, 8, 8, 0] 
Final Configuration:     [1.00, 0.10, -0.09, 8, 8, 0] 

Table 6.1 Basic motion planning results with different initial configurations. The table 
compares the initial and final configurations for three different variations of the basic 
motion planning algorithm. The three variations are to use the iterative #°°-nlter, to 
use the estimated initial configuration, and to correct the initial configuration to exactly 
match the final position and orientation requirements. 

Algorithm Initial Configuration Final Configuration 

#°°-Filter [1, 0, 0, 0, 0, 0] [1.00, 0.10, -0.09, 7.89, 7.81, -0.06] 

Estimated Initial [0.99, -0.12, 0.15, 0, 0, 0.12] [0.99, 0.10, -0.10, 7.92, 7.94, -0.12] 

Corrected Initial [1, 0, 0, 0.55, -0.23, 0.06] [1, 0.10, -0.09, 8, 8, 0] 
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Figures 6.4 and 6.5 provide two more examples of feasible motions developed using 

the basic motion planning algorithms. Figure 6.4 shows a U-turn motion and Figure 6.5 

displays how the vehicle would make a lateral displacement. These examples verify that 

the planning approach can solve a wide range of practical problems for an underactuated 

vehicle. 

Figure 6.4 Additional basic motion planning results using the estimated initial configu- 
ration. The motion is a feasible position curve for a U-turn and it relied on the i7°°-filter 
to improve the results. 
Initial Configuration:    [0.99, -0.15, 0.16, 0, 0, 0.15] 
Goal Configuration:      [1, 0, 0, 0, 10, 7r] 
Final Configuration:     [0.99, -0.14, 0.14, 0.02, 9.94, 3.30] 

6.1.2    Extensions to basic motion planning examples 

To solve the obstacle avoidance and multiple vehicle planning problems, we combined 

aspects of the basic motion planning algorithm with the rapidly-exploring random trees 

search technique to develop feasible plans. Figures 6.6 and 6.7 illustrate two examples 

of these techniques. In Figure 6.6, we planned the motion for a single vehicle around 

a set of obstacles. The figure shows the raw position curve as planned by the modified 

RRT software as well as the smoothed curve after applying the iterative #°°-filter. This 
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Figure 6.5 Additional basic motion planning results using the estimated initial config- 
uration. The motion is a feasible position curve for a lateral displacement and it did not 
require the H°°-filter to improve the results. 
Initial Configuration:    [0.99, -0.15, 0.22, 0, 0, 0.15] 
Goal Configuration:      [1, 0, 0, 0, 10, 0] 
Final Configuration:     [0.99, 0.10, -0.10, -0.31, 9.69, -0.12] 

example highlights how the #°°-filter softens the transition between the two rapidly- 

exploring trees that appears as a zigzag at coordinates (x, y) = (55, 47) in Figure 6.6(a), 

but is absent in Figure 6.6(b). 

Figure 6.7 illustrates the results of planning motions for two vehicles around obstacles 

and applying the sampling smoothing approach to improve the trajectories. To develop 

the smoothed trajectories in Figure 6.7(b), we sampled the trajectories for each vehicle at 

the initial and final configurations and at two intermediate configurations. We then used 

the basic motion planning algorithm to plan motions between successive configurations 

to achieve substantially smoother feasible trajectories. In this case, we required a min- 

imum amount of sampling to capture the important aspects of the vehicles' motions to 

avoid collisions. Other examples may require more intermediate sample points to achieve 

similar results. 
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Figure 6.6 Motion planning with obstacles in the environment.   Part (a) shows the 
results of the RRT algorithm and part (b) shows how smoothing the trajectory with the 
iterative i/°°-filter improves the results. Both trajectories are feasible. The dark boxes 
are the obstacles. 
Initial Configuration:    [1, 0, 0, 40, 40, 0] 
Goal Configuration:      [1, 0, 0, 50, 50, 0] 
Final Configuration:     [1.21, -0.03, 0.01, 48.61, 49.36, 0.11] 
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Figure 6.7 Motion planning for multiple vehicles with obstacles. Part (a) shows the 
results of the RRT algorithm and part (b) shows how smoothing the trajectories with 
sampling improves the results. We used the basic motion planning algorithm to plan the 
motions between the sample points. Both trajectories are feasible. 

Vehicle 1 Vehicle 2 
Initial Configurations:    [1, 0, 0, 40, 40, 0] [1, 0, 0, 40, 50, 0] 
Goal Configurations:      [1, 0, 0, 50, 50, 0] [1, 0, 0, 50, 40, 0] 
Final Configurations:     [0.96, 0, 0, 49.74, 50, 0]    [0.99, -0.11, 0.11, 49.62, 38.61, 0.06] 
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6.2    Perfect State Feedback Examples 

The perfect state feedback tracking controller forces the vehicle to follow the feasible 

trajectories generated by the motion planning algorithms. Figures 6.8 and 6.9 illustrate 

the results of applying this controller when different disturbances are present and the 

vehicle has significantly different initial conditions. In Figure 6.8, the system is subjected 

to a white noise disturbance with a = 0.5 and the vehicle's initial configuration aligns 

with the expected initial configuration. The controller successfully rejects the influence 

of the noise to follow the feasible trajectory and approach the desired final configuration. 

Figure 6.9 illustrates the effect of applying a sinusoidal disturbance to the system and 

giving the vehicle an exceptionally large initial configuration error. This type of large 

initial error could occur if the underactuated controller was used as a backup system 

for a fully actuated vehicle. In this case, there would be a delay between the actuator 

failure and the application of the new controller, which would allow the vehicle to drift 

away from the intended trajectory. Section 6.6 provides a more detailed discussion of this 

example. Even though the initial configuration is drastically different from the expected 

initial configuration, the tracking controller corrects the error using a natural motion 

and makes the vehicle approach the feasible trajectory. The sinusoidal nature of the 

disturbances is visible in the velocity plots in Figure 6.9(a) and in the control input plots 

in Figure 6.9(c). 

To verify that the tracking control algorithm works for the obstacle avoidance and 

multiple vehicle cases, we applied the perfect state feedback tracking controller to the 

motions planned in Figures 6.6 and 6.7. Figure 6.10 displays the results. In both cases, 

the vehicles tracked the feasible trajectories without collisions, as expected. 
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Figure 6.8 Perfect state feedback trajectory tracking. Part (a) shows the desired (dashed 
lines) and actual (solid lines) velocities for the vehicle, part (b) shows the positions and 
orientations, part (c) shows the two control inputs, and part (d) displays stop-motion 
images of the vehicle as it tracks the x-y position curve. The disturbances are white noise 
with a = 0.5. 
Initial Configuration:    [1, 0, 0, 0, 0, 0] 
Goal Configuration:      [1, 0, 0, 8, 8, 0] 
Final Configuration:     [1.06, -0.08, 0.03, 7.84, 7.98, 0.01] 
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Figure 6.9 Perfect state feedback trajectory tracking with poor initial conditions. The 
vehicle has a significant displacement from the desired trajectory, but the tracking con- 
troller is able to generate a natural motion to recover from the initial error. The distur- 
bances are sinusoidal signals with an amplitude of 0.1 and a frequency of 0.2 Hz. 
Initial Configuration:    [1, 0, 0, 6, 2, 0] 
Goal Configuration:      [1, 0, 0, 8, 8, 0] 
Final Configuration:     [1.04, 0.11, -0.05, 7.91, 7.86, -0.14] 
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Figure 6.10 Perfect state feedback tracking with obstacles and multiple vehicles. 
Part (a) shows stop-motion images of the vehicle tracking the smoothed x-y position 
curve around obstacles, as planned in Figure 6.6. Part (b) shows stop-motion images for 
two vehicles with coordinated motions around obstacles, as planned in Figure 6.7. 
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6.3    Imperfect State Measurement Examples 

The imperfect state measurement controller can only directly access the position and 

orientation variables for feedback, so it must develop estimates for the other three states 

to implement the control law. Figures 6.11 and 6.12 depict the results of applying the 

imperfect state measurement controller to the same examples illustrated in Figures 6.8 

and 6.9. The figures corresponding to the imperfect state measurement case include 

estimates for the state variables as dotted lines in parts (a) and (b) of the figures. 

Comparing Figure 6.11 with Figure 6.8, we observe that the tracking performance for 

the imperfect state measurement case is not as good as for the perfect state measurement 

case. We expect the imperfect state measurement approach will produce larger errors 

because of the extra estimation required in the algorithm, but the final configuration 

errors are similar for the two approaches and the overall results are acceptable. 

In Figure 6.12 with the imperfect state measurement controller, we note that the 

vehicle actually converges on the desired position curve sooner than in Figure 6.9, where 

we applied the perfect state feedback control law. This occurs because the imperfect state 

measurement controller is using the state estimates to develop the control inputs and, in 

this case, the estimates positively interact with the initial configuration to improve the 

overall performance. We expect this performance to be atypical for the imperfect state 

measurement approach. 

To complement the examples for the imperfect state measurement controller, we now 

present a small set of simulations that demonstrate the validity of Assumption A5.1 for 

an underactuated ship model. The three figures show how changes in the disturbance 

term w affect the eigenvalues of F(t) and the values in ß(t). Section 5.3 defines these 

terms and explains their importance to Assumption A5.1. Each simulation is based on 

the vehicle tracking a feasible circular trajectory. Figures 6.13 through 6.15 each contain 
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Figure 6.11 Imperfect state measurement tracking control. Part (a) shows the desired 
(dashed lines), estimated (dotted lines), and actual (solid lines) velocities for the vehicle; 
part (b) shows the positions and orientations; part (c) shows the two control inputs; and 
part (d) displays stop-motion images of the vehicle as it tracks the x-y position curve. 
The disturbances are white noise with a = 0.5. 
Initial Configuration:    [1, 0, 0, 0, 0, 0] 
Goal Configuration:      [1, 0, 0, 8, 8, 0] 
Final Configuration:     [1.05, 0.15, -0.07, 7.79, 8.29, 0.03] 
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Figure 6.12 Imperfect state measurement case with poor initial conditions. The system 
disturbances are sinusoidal signals with an amplitude of 0.1 and a frequency of 0.2 Hz, 
and the measurement disturbances are white noise with a = 0.5. 
Initial Configuration:    [1, 0, 0, 0, 0, 0] 
Goal Configuration:      [1, 0, 0, 8, 8, 0] 
Final Configuration:     [1.04, 0.12, -0.05, 7.91, 7.90, -0.14] 
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three parts. Parts (a) and (b) plot the eigenvalues of F(t) versus time, and part (c) 

displays the nonzero elements of ß(t) versus time. In each plot, the solid line shows 

the results for some nonzero disturbance and, for comparison, the dashed line shows the 

values when there are no disturbances. 

Figure 6.13 applies the worst-case disturbance and the other figures use sampled white 

noise with a set to 0.5 and 5. In each case, the disturbances have a relatively mild effect 

on the eigenvalues of F(t) and on ß(t). With a = 5 in Figure 6.15, the role of the noise 

is more prominent, but the magnitude of the changes is not significantly different from 

that with a = 0.5 in Figure 6.14. 

These simulations show that Assumption A5.1 is reasonable for the desired trajectory 

examined is this case. The validity of Assumption A5.1 should be verified for each system 

and for all desired trajectories to ensure the controller designed in Section 5.3 will deliver 

acceptable performance. 

6.4    Comparison of Results to Existing Techniques 

To help judge the value of the controller designs, we compared the tracking perfor- 

mance to two other controller design techniques for underactuated vehicles. The other 

techniques were developed by Godhavn [51] and by Pettersen and Nijmeijer [3]. As de- 

scribed in Chapter 2, both of these approaches rely on backstepping to develop their re- 

sults. We provide a single simulation example that highlights the key differences between 

our approach and the other two controller designs. Figure 6.16 shows the stop-motion 

images of the vehicle following the x-y curve using the state feedback tracking controller 

designed in Chapter 4. The motion planning algorithm assumed that the vehicle had 

an initial orientation of -i/^o) = 0, but the actual orientation was ip{t0) = TT- 
Tne state 

feedback controller was able to correct for the initial error and make the vehicle converge 
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Figure 6.13 Analysis of terms influenced by the disturbance. Parts (a) and (b) show 
the 12 eigenvalues of F(t) plotted versus time. Part (c) shows the values of the three 
nonzero elements of ß(t) versus time. The solid lines are the values when the disturbance 
is the worst-case disturbance, and the dashed lines show the values when there are no 
disturbances. 
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Figure 6.14 Analysis of terms influenced by the disturbance. Parts (a) and (b) show 
the 12 eigenvalues of F(t) plotted versus time. Part (c) shows the values of the three 
nonzero elements of ß(t) versus time. The solid lines are the values when the disturbance 
is the sampled white noise with a — 0.5, and the dashed lines show the values when there 
are no disturbances. 
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Figure 6.15 Analysis of terms influenced by the disturbance. Parts (a) and (b) show 
the 12 eigenvalues of F(t) plotted versus time. Part (c) shows the values of the three 
nonzero elements of ß(t) versus time. The solid lines are the values when the disturbance 
is the sampled white noise with a = 5.0, and the dashed lines show the values when there 
are no disturbances. 
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on the desired trajectory. There is a small final orientation error, but the final position 

and velocities are close to the desired values. 

y 

12 
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•> 

Figure 6.16 Comparison of perfect state feedback tracking to other techniques. The 
motion planning algorithm assumed the vehicle had an initial orientation of ip(t0) = 0, 
but the actual orientation was tp(to) = IT. The state feedback controller corrects for 
the initial configuration error and forces the vehicle to track the desired trajectory, 
even though there are white noise disturbances with a = 0.5 affecting the system. 
Actual Initial Configuration:        [1, 0, 0, 0, 0, IT] 

Expected Initial Configuration:    [1, 0, 0, 0, 0, 0] 
Goal Configuration: [1, 0, 0, 0, 10, IT] 

Final Configuration: [1.04, -0.32, 0.26, 0.09, 9.88, 3.46] 

The results shown in Figure 6.16 are an improvement over the technique proposed 

by Godhavn for two reasons. First, the tracking controller developed in Chapter 4 cor- 

rects the orientation of the vehicle. Godhavn's backstepping controller does not penalize 

configurations when the vehicle is oriented backwards along the trajectory and cannot 

correct this situation. Godhavn's technique would force the vehicle to move backwards 
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along the path. The second advantage of our approach is that the technique is designed 

to be robust to disturbances and to attenuate their effect on the system. As shown 

in Figure 6.16, the vehicle still captures the desired trajectory when disturbances are 

present. The backstepping derivation requires an accurate model of the system and does 

not consider the effect of disturbances. Godhavn remarks in [51] that disturbances can be 

included in the model and addressed with backstepping, but does not present the results. 

We should note that Godhavn's approach is still a reasonable method for performing 

tracking for an underactuated vehicle if the initial configuration has a small orientation 

error and there are no disturbances in the system. 

Our techniques also offer some improvements over those developed by Pettersen and 

Nijmeijer [3]. The results in Figure 6.16 show that the vehicle converges to the desired x- 

y position curve after correcting the initial error. The simulations reported in [3] indicate 

that the controller was not able to make the vehicle converge to the desired position curve. 

As in our example, the desired position curve in [3] was a circular arc, but the vehicle 

always maintained a slight offset from the desired position. In addition, one version of 

the Pettersen and Nijmeijer controller was designed with pure backstepping and did not 

perform well with unmodeled dynamics. The authors do describe another controller to 

correct for this deficiency, which makes their approach robust to modeling errors. With 

the exception of the minor convergence problem, the Pettersen and Nijmeijer approach 

offers a viable alternative to our design, 

6.5    Extension of Techniques to Additional Models 

In this section we will consider three extensions to the basic model used for the 

majority of the experiments. First, we will consider the performance of the motion 

planning and control algorithms when we introduce a nonminimum phase behavior into 
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the model. Next we will change the parameter values in the model to demonstrate that 

the techniques work for vehicles with different properties. Finally, we will provide a few 

simulations that illustrate how the state feedback tracking controllers perform when the 

disturbances affect the unactuated directions in the model. 

We performed a set of three simulations for the nonminimum phase system described 

in Section 4.5 and compared the results to the original system with kv = 0. To simplify the 

comparison, we set the disturbances to zero, but including disturbances should not signif- 

icantly alter the results. In each simulation, the system started at q = [1, 0, 0, 0, 0, 0]T. 

Table 6.2 summarizes the results of the three experiments. In each case, the final tracking 

performance was similar for the original system and the nonminimum phase formulation. 

There were only minor and insignificant differences between the results. These experi- 

ments indicate that the motion planning and control algorithms perform well for both 

minimum and nonminimum phase systems. 

The second extension to the original vehicle model shows that the motion planning 

and tracking algorithms still provide good solutions when we fundamentally change the 

parameters in the model. We selected the following values for the model parameters: 

mu = 2.0,        mv = —0.5,        mr = —2.5 

du = 2.0,        dv = 1.0,        dr = 5.0. 

Table 6.2 Comparison of minimum and nonminimum phase systems. The final config- 
urations are nearly identical for the two approaches. 

Desired Final Minimum Phase Final Nonminimum Phase Final 

[1, 0, 0, 8, 8, 0]      [0.99, 0.10, -0.10, 7.92, 7.94, -0.11]     [1.00, 0.09, -0.10, 7.85, 7.95, -0.12] 

[1, 0, 0, 0, 10, 0]     [0.99, 0.10, -0.10, -0.31, 9.69, -0.12]    [0.98, 0.08, -0.07, -0.19, 9.59, -0.20] 

[1, 0, 0, 0, 10, TT]    [0.99, -0.14, 0.14, 0.02, 9.94, 3.30]       [0.99, -0.13, 0.13, -0.07, 10.01, 3.28] 
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These new parameter values contain two significant changes from the original set. First, 

we exchanged the relative magnitudes of mu and mv and, second, we changed the sign of 

mr. These values represent a change in the shape of the vehicle from one that moves with 

its major axis perpendicular to the forward velocity to one with the major axis aligned 

with the forward velocity. We simulated this system with a motion from [1, 0, 0, 0, 0, 0] 

to [1, 0, 0, 8, 8, 0] and Figure 6.17 displays the results. The motion planning and perfect 

state feedback tracking control algorithms successfully handled a fundamental change in 

the parameter values for the model. 

y 

Figure 6.17 Motion planning and tracking with a new vehicle model. The algorithms 
successfully planned the motion and controlled the vehicle after a fundamental change in 
the model parameter values. 

The final set of simulations in this section examines how well the tracking controller 

attenuates different types of disturbances. We used the basic motion planning algorithm 

to plan a motion from [1, 0, 0, 0, 0, 0] to [1, 0, 0, 8, 8, 0], and then subjected the system 
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to four different types of disturbances. The first simulation applied disturbances with 

constant amplitude signals along the actuated directions and no signal in the unactuated 

direction, so that we had w = [wi,W2,Wz]T — [0.1,0,0.1]T, in the equations of motion. 

For the second simulation, we applied the constant amplitude disturbance in only the 

unactuated direction, so that we had w = [0,0.1,0jT. The third and fourth simulations 

mirrored the first two in terms of the directions the disturbances influenced, but the 

constant amplitude signals were replaced with sinusoidal signals of the form Wi(t) = 

0.1cos[27r(0.2)i]. Table 6.3 summarizes the results of applying the perfect state feedback 

tracking controller with the different types of disturbances. The controller successfully 

compensates for the disturbances regardless of their direction. In all cases, the controller 

was able to force the vehicle to approach the desired final configuration at the appointed 

time. The velocity errors for v, the unactuated direction, were slightly larger in the two 

cases where the disturbances affected only that direction, but the final configurations 

were still very close to the desired values. 

We performed additional simulations where the disturbances depended on the ori- 

entation of the vehicle. This situation would arise if the vehicle was turning and the 

disturbances were fixed with respect to the inertial frame. An example of this case would 

be a ship turning while the waves continued to move in a constant direction. The perfect 

state feedback tracking controller successfully handled this situation by rejecting the dis- 

Table 6.3 Disturbance attenuation results with disturbances affecting different direc- 
tions. The table shows the final configurations using the perfect state feedback tracking 
controller with the various combinations of disturbances. The controller attenuates the 
influence of the disturbances even when they only affect the unactuated directions in the 
system. 

Directions Constant Amplitude Sinusoidal 

Actuated        [1.04, 0.07, -0.05, 8.00, 8.10, -0.05]    [1.04, 0.07, -0.05, 7.91, 7.90, -0.14] 

Unactuated    [1.01, 0.13, -0.08, 7.89, 8.11, -0.13]    [0.99, 0.13, -0.09, 7.93, 7.91, -0.12] 
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turbances, regardless of the vehicle's orientation, and approximately tracking the desired 

trajectory. 

Taken together, the three extensions to the motion planning and control algorithms 

described in this section convincingly show that the approach can be generalized to handle 

different types of systems and is robust enough to neutralize the effect of a variety of 

disturbances. 

6.6    Failure Recovery for a Fully Actuated Vehicle 

One potential application for the ability to plan motions for an underactuated vehicle 

is to allow a fully actuated vehicle to gracefully recover from an actuator failure. As men- 

tioned in Chapter 1, this capability could be extremely helpful for aircraft or spacecraft 

systems where an actuator failure can mean the difference between being able to control 

the vehicle and suffering a catastrophic loss. The motion planning and tracking control 

problems for the fully actuated system are fundamentally different from those for an un- 

deractuated system because, in the fully actuated case, the vehicle can potentially follow 

any reference trajectory. The only limitations on the motion would be from actuator 

saturation. If the system suffers a failure, the control law designed for the fully actuated 

case will not have the desired effect and we will have to replan the motion and apply a 

new controller to satisfy the motion requirements. We will outline how the motion plan- 

ning and control algorithms for an underactuated vehicle could serve as a key element in 

a failure recovery system for a fully actuated vehicle. We will leave experimentation and 

further study of this topic as an area for future research. 

Suppose we are given a model for a fully actuated system that may be subject to 

actuator failure during normal operation. If an actuator failed, we would execute the 

following actions to maintain control over the vehicle. First, we would have to identify 
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the actuator failure and adjust the model of the vehicle to reflect the change in dynamics. 

Identifying the failure can be a nontrivial problem. One clear indication of a failure 

would be that the vehicle is no longer properly tracking planned motions. For critical 

applications, the vehicle could also be equipped with sensors to indicate actuator failures, 

but the sensors add an extra layer of expense and complexity which may not be desirable. 

It is reasonable to assume that we will not be able to completely identify the new system 

model and there will be unmodeled dynamics in the revised model. These unmodeled 

dynamics can be considered as disturbances for the new control law to attenuate. 

Once the actuator failure is identified and the model corrected, we can use the original 

motion plan for the vehicle and the basic motion planning algorithm to develop a set of 

alternative feasible motions for the vehicle. With a new set of feasible motions, we 

could apply one of the tracking controllers developed in Chapters 4 or 5 to control the 

vehicle's motion. Since we used the H°° design approach, the tracking controllers are 

robust and can handle a variety of bounded disturbances, including those that result 

from unmodeled dynamics. The revised system may not be able to complete the original 

mission objectives, but the underactuated design may provide sufficient control over the 

vehicle to allow us to bring it to a safe configuration where repairs can be made. 

We presented a brief characterization of how the motion planning and control algo- 

rithms for an underactuated vehicle could be used to assist a fully actuated vehicle that 

suffered an actuator failure. These ideas point to a line of research that is rich with 

opportunity for future study. 

6.7    Computational Complexity 

As noted above, we completed most of the motion planning and tracking control sim- 

ulations using the Mathematica software. This software allowed us to solve the problems 
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by writing a high-level code that is very similar to the equations used to describe the 

original problems. The drawback with using a high-level language such as Mathematica 

is that the software involves a significant amount of processing overhead, which increases 

the time required to complete the simulations. To develop more efficient software, the 

motion planning and tracking algorithms could be implemented in C/C++, which would 

allow us to eliminate the processing overhead associated with Mathematica and decrease 

the simulation times. We will leave these types of enhancements to the simulations as 

an area for future study. 

Regardless of the manner in which we implement the motion planning and tracking 

control algorithms, the overall computational complexity of the algorithms will remain 

the same. We will now outline the key computational requirements for the basic motion 

planning algorithm and the two tracking control algorithms to help characterize the 

solution. For this discussion, we will use the variable m to denote the number of states in 

the configuration vector and the variable n to denote the number of time steps between 

to and tf in a simulation. We will also use the order notation O(-) to characterize the 

rate at which the processing time grows with respect to the number of states and the 

number of time steps. We will present a general estimate of the processing growth rate 

and will not attempt an in-depth investigation to this aspect of the simulations. 

As described in Section 3.2, the basic motion planning algorithm consists of four 

main steps. The first step generates the polynomial curve in the x-y plane that connects 

the initial and final positions with a curve having the correct orientation at each end- 

point. This operation depends on only the initial and final configurations and the time 

interval, but not the number of steps in the time interval. It does not matter if we use 

the cubic spline or the Pythagorean hodograph curve solution for the first step, since 

both approaches are independent of the variable n. Increasing the number of states in 

the configuration will increase the processing time, and the algorithm will have to be 
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adapted to plan position curves for nonplanar systems. With these factors in mind, we 

estimate the processing time for the first step as 0(m). The second motion planning step 

estimates the complete trajectory and the corresponding control inputs at each time step 

n, so this step is order 0(mn). The third step uses the estimated inputs in conjunction 

with the differential equations of motion to generate a feasible trajectory for the vehi- 

cle, which requires 0(mn) operations. The final motion planning step implements the 

iterative /^-filter. Each iteration of the filter requires solving a differential equation to 

estimate each state and a matrix differential equation to find the filter covariance ma- 

trix. Both differential equations are evaluated at each time step, so the fourth step is 

0(m2n). Combining the four steps in the motion planning algorithm, we conclude that 

the processing time is 0(m2n). 

The perfect state feedback tracking control algorithm contains two key steps to de- 

velop the control law. The first step is to linearize the equations of motion at each time 

step along the desired trajectory. This operation is 0(mn) because each state contributes 

one linearization equation and the equations are evaluated at each time step. The sec- 

ond step in the algorithm is to solve the generalized Riccati differential equation at each 

time step, which adds 0(m2n) operations to the processing time. The m2 term appears 

because the GRDE is a matrix differential equation. Overall, the perfect state feedback 

tracking control algorithm is 0(m2n). 

The analysis of the computational complexity for the imperfect state measurement 

tracking controller includes the operations required for the perfect state feedback case. 

We must also account for the additional processing to estimate the complete state vector. 

To estimate the state, we must solve a vector differential equation with 0(mn) and an 

associated matrix differential equation of order 0(m2n). Therefore, the imperfect state 

measurement tracking controller is also order 0(m2n). 
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If we couple the motion planning algorithm with either of the tracking controllers, 

the computational complexity of the solution grows with order 0(m2ri). This result 

indicates that increasing the number of states m in the underactuated system increases 

the processing time at a faster rate than increasing the number of time steps n in the 

simulation. As indicated above, this estimate for the computational complexity does not 

depend on the type of software used to implement the algorithms. 

6.8    Simulation Results Summary 

We have presented in this chapter a series of simulations that illustrate the motion 

planning and controlling algorithms developed in Chapters 3, 4, and 5. The simulation 

results also offer empirical support for Assumption 5.1 by demonstrating that the distur- 

bances do not significantly affect the terms F(t) and ß(t), which appear in the imperfect 

state measurement controller design. We compared our design techniques to other ap- 

proaches that address similar problems and showed how our design approaches work 

well with different vehicle models. In addition, this chapter described how to apply the 

planning and controlling techniques to allow a fully actuated vehicle to recover from an 

actuator failure. Finally, we outlined the computation complexity of the significant algo- 

rithms used to solve the motion planning and tracking control problems. The simulation 

results verify that our design techniques provide practical solutions to the challenging 

problem of planning and controlling the motion of a nonlinear underactuated vehicle 

when disturbances are present and only imperfect state measurements are available for 

feedback. 
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CHAPTER 7 

SUMMARY 

This concluding chapter summarizes the contributions of the completed research and 

outlines the additional research areas related to this effort that could be explored in the 

future. 

7.1    Completed Research and Contributions 

Our research has focused on developing a suite of tools to plan and robustly control 

the motion of a nonlinear underactuated vehicle when disturbances are present in the 

system and only imperfect state measurements are available. Where possible, we have 

used iP°-optimal control techniques to efficiently construct solutions that provide ex- 

cellent performance under a variety of conditions. There are five main contributions of 

the completed research. First, we showed how to use polynomial curves and numerical 

methods to develop feasible trajectories for underactuated vehicles. This approach al- 

lowed us to directly develop trajectories without extensive search routines. The second 

contribution is the introduction of an iterative jy°°-filter to improve the planned motions 

for the vehicle. The filter accounted for the underactuated nature of the system to help 

improve the results. Third, we showed how to combine the results of the basic motion 

planning algorithm with existing planning techniques to generate solutions to the ob- 

stacle avoidance and multiple vehicle planning problems. The fourth contribution is the 
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development and analysis of the linearized H°° controller for an underactuated system. 

This design combined two standard techniques to generate a control law with excellent 

tracking performance under demanding conditions. Finally, this research constructed an 

interlaced H°°-filter based on a unique decomposition of the equations for the underac- 

tuated model. This approach allowed us to prove disturbance attenuation results for the 

closed-loop system when only imperfect state measurements were available for feedback. 

Combined, these results demonstrate that we have made useful advances in the field 

of underactuated vehicle motion planning and control. Along the way, we have identified 

a host of additional research opportunities that could be addressed in the near future. 

7.2    Potential Research Areas 

We will sketch a range of potential research areas spawned from our work on motion 

planning and control for underactuated systems. 

There are several ways to build upon our motion planning results. First, our results 

have focused on the planar vehicle case, but the basic motion planning algorithm could 

be adapted to handle three-dimensional scenarios as well. The key challenges with this 

approach would include finding a way to efficiently generate the initial polynomial curve, 

as well as using the equations of motion for the system to derive a feasible trajectory from 

the initial curve. Another research area would be to further explore the rapidly-exploring 

random trees approach to solving motion planning problems for underactuated systems. 

The current approach could be improved by refining the algorithm and through more 

efficient software coding to help reduce the processing time. A third motion planning 

contribution would be to use our basic planning algorithm to investigate the decoupled 

approach to solving the multiple vehicle planning problem.   The decoupled approach 
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offers computational advantages over the centralized method we employed and may offer 

more elegant solutions to the problem. 

The list of potential research areas related to the controller design is quite extensive 

and offers some significant challenges. Two control design techniques that could be 

applied to the underactuated vehicle tracking problem are pseudolinearization and gain 

scheduling. Pseudolinearization may provide a reasonable solution to the problem, but 

requires developing a transformation to make the system linearizable about the desired 

trajectory. A gain scheduling approach can likely solve this problem as well, but the key 

elements in the design will be to select appropriate operating points that characterize 

different types of motion and to determine how to schedule among the operating points. 

These control techniques are closely related and it may be efficient to conduct a combined 

study of the two approaches for underactuated vehicles. 

In Chapter 1, we mentioned three restrictions on our research to help limit the scope 

of the project. Each of these restrictions points to a new research direction for underac- 

tuated vehicle control and we will comment on two of three areas. For realistic vehicles, 

adaptive control techniques are very practical and should be explored. Along with adap- 

tive control, parameter estimation is an important aspect of the problem. Both of these 

techniques would help generate controllers that could respond to changing conditions in 

the environment. The biologically inspired control techniques of neural networks, fuzzy 

logic, and genetic algorithms also offer practical methods for addressing the control prob- 

lem. These approaches are especially useful when the underlying system is nonlinear and 

standard approaches do not yield a solution. 

Another meaningful area of research would be to consider bounded control inputs 

or the effects of saturation on the actuators. The model used for our results did not 

have these limitations, but they represent practical situations that the controller should 

be able to handle. On a related note, extensions to our research could also account for 
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actuator dynamics. We assumed that the actuators could instantaneously achieve the 

commanded inputs. A more realistic model would account for the transient behavior of 

the actuators when developing a control signal. 

The final two suggested research topics are items that we considered, but we were 

not able to develop complete solutions for them. It would be very helpful to prove a 

separation principle for the imperfect state measurement problem and use the principle 

to prove local exponential stability for the closed-loop system. This line of investigation 

would allow us to describe a region of attraction for the imperfect state measurement 

case and allow system designers to know exactly when this control technique would be 

useful for a particular system. The other area that is worth exploring in more detail is 

how to use the underactuated controllers to recover from failures with a fully actuated 

system. This research could consider the complete design and develop experiments to 

demonstrate the approach. 

This outline of additional research areas serves as a first step to extend our contribu- 

tions on planning and controlling the motion of an underactuated vehicle. 
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APPENDIX A 

CUBIC SPLINES AND HODOGRAPH CURVES 

A.l    Introduction 

This appendix describes two methods for generating polynomial position curves for 

the motion planning problem. The first technique uses cubic splines and the second ap- 

proach uses the concept of Pythagorean hodograph curves. We will use both methods 

to solve the Hermite interpolation problem. Cubic splines are a standard technique and 

Pythagorean hodograph curves offer an alternative method for generating polynomials. 

Pythagorean hodograph curves are valuable because they allow for an analytical com- 

putation of curvature, length, and bending energy in a candidate path. We can also 

directly calculate offset paths located a fixed distance from the curve, which may help in 

analyzing the performance of the motion planning algorithm. We solve the Pythagorean 

hodograph curve problem using polynomials with complex numbers to provide a com- 

pact representation. We used Mathematical perform the calculations and display the 

results. 

A.2    Problem Formulation 

The problem we would like to solve is to find a planar x-y position path that connects 

two points and satisfies tangent conditions at each point. This problem is known as the 
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Hermite interpolation problem [99] and has a well-known solution if the path coordinates 

are characterized by cubic polynomials. This section will present the notation used to 

describe the problem. Section A.3 will provide the solution using cubic splines and 

Sections A.4 and A.5 will describe the second solution to the problem using Pythagorean 

hodograph curves. Section A.6 will provide a few examples to illustrate the Pythagorean 

hodograph technique for solving the Hermite interpolation problem. 

Our objective is to find polynomials x(t) and y(t) such that the path generated by 

{x(t),y(t)} with t G [0,1] satisfies a set of boundary conditions. The time interval has 

been normalized to [0,1] without loss of generality. We define r(t).:= {x(t),y(t)} and 

r'(i) := {x'(t), y'(t)} to simplify the notation for the parametric curve and its derivative. 

We are given the values of r(0), r(l), r'(0), and r'(l) as the boundary conditions for the 

problem. We note that we can easily compute these values from the information available 

to solve the motion planning problem presented in Chapter 3. 

A.3    Cubic Spline Solution 

The solution for the cubic spline interpolation problem solves a set of simultaneous 

equations based on the polynomials for each coordinate. We have 

x{t)   =   axt
3 + bxt

2 + cxt + dx (A.l) 

y(t)        =        CLyt3   +  byt2  +  Cyt +  (ly (A.2) 

and 

x'(t)   =   3axt
2 + 2bxt + cx (A.3) 

y>{t)   =   3ayt
2 + 2byt + cy. (A.4) 

Consider the x(t) coordinate first. If we evaluate x(t) and x'(t) each at t = 0 and t = 1, 

we have four equations.  There are four unknown parameters (ax,bx,cx,dx), so we can 
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solve for the parameters uniquely. In terms of the boundary conditions, the solution is 

ax = 2[z(0)-ar(l)]+a;/(0)+a;'(l) 

bx = 3[x{l)-x{0)]-2x'(0)-x'{l) 

cx = x'(0) 

dx = x(0). 

We can construct a similar solution for the y coordinate. 

In practice, we generate the cubic spline using a single MATLAB command, spline .m, 

which returns the polynomials for the x and y coordinates. The MATLAB routine uses 

the method of divided difference to find the polynomials that represent the spline. The 

MATLAB documentation and de Boor's text on splines [100] provide more detailed infor- 

mation about the approach. The MATLAB function spline.m is equivalent to solving a 

system of four linear equations described above for each coordinate. 

The solution presented above using cubic splines readily generates a candidate path, 

but it may be difficult to find analytical expressions for curvature along the path or path 

length. We can numerically approximate these values for specific problems, but it is 

difficult to find general solutions. Pythagorean hodograph curves offer an alternative ap- 

proach that solves the Hermite interpolation problem and provides analytical expressions 

for curvature and path length. 

A.4    Pythagorean Hodograph Curves 

Pythagorean hodograph curves were introduced by Farouki and Sakkalis [101] as a 

mathematical concept that could assist with computer modeling and graphics. Farouki 

and Neff [102] used Pythagorean hodograph curves to solve the Hermite interpolation 

problem, and Farouki [103] further developed the concept to compute the bending energy 
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of the curves. Bruyninckx and Reynaerts [104] applied Pythagorean hodograph curves 

to path planning for mobile and hyper-redundant robots, which is closely related to the 

path planning problem. This section will explain the general concept of Pythagorean 

hodograph curves and describe how some of their properties are particularly useful for 

path planning. 

The hodograph of the planar curve r(t) — {x(t),y(t)} is the curve of velocities given 

by r'(t) := {x'(t), y''(t)}. A planar curve is a Pythagorean hodograph (PH) curve if its 

hodograph satisfies the algebraic Pythagorean constraint 

x'2(t)+y'2(t) = a2(t) (A.5) 

for some polynomial (j(t). To solve for the Pythagorean hodograph curves we will express 

the curves as complex-valued polynomials of the form x(t) + iy(t). This approach will 

allow us to develop a more compact solution and to exploit the complex algebra capabil- 

ities of standard computational software. Before we present the solution using complex 

notation, we consider some facts about PH curves using real polynomials. 

Following [102], we let u(t), v(t), and w(t) be nonzero real polynomials such that u(t) 

and v(t) are relatively prime and not both constants. If we form a parametric curve with 

the derivatives 

x'(t)=w(t)[u2(t)-v2(t)]    and   y'{t) = 2w(t)u(t)v(t) (A.6) 

then the curve will be a Pythagorean hodograph curve with 

a(t) = w(t)[u2(t) + v2(t)}. (A.7) 

We will use this type of construction with the complex polynomials when we present the 

detailed solution. 

Pythagorean hodograph curves are different from other polynomial curves because we 

can express the parametric speed, unit tangent, unit normal, and curvature as rational 

133 



functions of parameter t. The parametric speed is given by 

ds 
= ^/x'2(t)+y'2(t) = \r'(t)\ = a(t). 

dt 

Having a polynomial expression for the speed will make it easy to compute the length 

of each curve without numerical approximations. We can express the unit tangent t, 

unit normal n, and curvature K in terms of the polynomials u, v, and w (assuming w is 

nonnegative) as 

(u2 — v2,2uv) (2uv,v2 — u2) 2(uv' — u'v) 
^ = 9~~i       9 '        n = 2~~i       2 '        K =        (    2    i       2Y2~' (^.8) uz + vz uz + vl w{uz + vz)z 

We can use the unit normal to find offset curves located at a signed distance d from the 

original curve using 

rd{t) = r(t) + dn(t). (A.9) 

These offset curves will help us describe a region around a desired path that the vehicle 

must stay within to meet performance objectives. Again, having a rational polynomial 

expression will simplify the calculations. 

The lowest-order Pythagorean hodograph curves that satisfy the Hermite interpola- 

tion constraints are the quintic (fifth-order) splines. The quintics do not give a unique 

solution and there are always four curves that satisfy the constraints. Of the four curves, 

there is one that gives a reasonable shape without too much turning or bending [102]. 

We would like to find all of the PH curves that satisfy a set of boundary conditions and 

then automatically select the one that has the most appropriate shape. 

Using another standard representation, we can express the curve r(t) in Bernstein- 

Bezier spline form: 

/ „\ 

(l-t)n-H\      «e [0,1]. (A.10) 
fc=0 

n 

k 
\K / 
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We can solve for the first two and last two control points Pfe using the boundary conditions 

for the curve given by r(0), r(l), r'(0), and r'(l). The resulting expressions are 

po = r(0),        pi = r(0) + -r'(0), 
lb 

pn_x = r(l) --r'(l),        Pn = r(l). 
lb 

For quintic PH curves, we can solve for control points po, Pi, P4, and p5 directly. Farouki 

and Neff [102] present a procedure for finding the other two control points using real 

polynomials, but we will not discuss it here. 

This section has presented the basic concept of a Pythagorean hodograph curve and 

some of its valuable properties. The next section will describe how to find the four 

PH curves that solve the Hermite interpolation problem and how to select the most 

reasonable curve for the path planning problem. 

A.5    Pythagorean Hodograph Solution 

We now present the solution to the Hermite interpolation problem using Pythagorean 

hodograph curves and a complex number representation. As mentioned above, the solu- 

tion can be stated using only real numbers, but the complex number approach allows us to 

take advantage of some of the computational features of the standard computational soft- 

ware packages, such as MATLAB or Mathematica. These results were originally reported 

by Farouki and Neff [102] and were summarized by Bruyninckx and Reynaerts [104]. We 

also extract some of the results from Farouki [103] to compute the length and energy of 

the curves. 

We will represent the parametric curves r(t) as a complex-valued polynomial x(t) + 

iy(t) and use the standard algebraic manipulations for complex numbers. The results 

depend on a key lemma from Farouki and Neff [102]: 
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Lemma A.l In the complex representation, the regular Pythagorean hodograph curves 

correspond to those curves whose hodographs are perfect squares of complex polynomials 

having relatively prime real and imaginary parts. 

Proof. The square of the complex polynomial p(t) = u(t) + iv(t) is p2(t) = u2(t) — 

v2(t) + i2u(t)v(t), whose real and imaginary parts are seen to be of the Pythagorean 

form (A.6) with w(t) = 1. Conversely, any complex hodograph having real and imaginary 

parts of the form (A.6) with w(t) = 1 is simply the square of the complex polynomial 

p(t) — u(t) + iv(t). Moreover, we note that the greatest common divisor of u and v, 

gcd(w, v), is equal to one if and only if gcd(u2 — v2, 2uv) = 1. □ 

Using Lemma A.l, the hodograph of any regular PH quintic curve can be written as 

r'(t)=k[(t-a)(t-b)}2 (A.11) 

where a, b, and k are complex numbers. To ensure we do not have a degenerate solution, 

the numbers a and b should have nonzero imaginary parts and they should not be 

conjugates of each other. 

The first step in the solution process is to convert the boundary conditions to standard 

form 

r(0) = 0, r'(0) = d0    and   r(l) = 1, r'(l) = dx 

by subtracting r(0) from the end points and dividing the end points and end derivatives 

by r(l) — r(0). We will revert back to normal form by reversing these two steps at the 

end. 

Next, we integrate the expression (A.11) and use the boundary condition r(0) = 0 to 

determine the constant of integration to get 

r(t) = |j[(t- a)5 - 5(t - a)4(t - b) + 10(* - a)3(i - b)2] + c (A.12) 
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where the constant is 

c = ^-(a5 - 5a4b + 10a3b2). (A.13) 

We have now reduced the problem to finding the complex constants a, b, and k such 

that the curve defined by (A.12) and (A.13) satisfies r'(0) = d0, r'(l) = dj., and r(l) = 1. 

The solution is given as the following proposition taken from [102]. 

Proposition A.l Let p be either of the two complex numbers defined by 

t = % (A.14) 

and hence let a be either of the two solutions to the quadratic equation 

30 
a2 - 3(1 + p)a + 6p2+ 2p +6- — = 0. (A.15) 

di 

Then if pi and pi are the two roots of 

p2-ap + p = 0 (A.16) 

the values of a and b in (A.12) are given by 

(A.17) 
Mi + 1 

and b= "2, 
A*2 + l 

The corresponding value of k is then 

,         d0 di 
a2b2      (1 - a)2(l - b)2 

and c is given in terms of a, b, and k by expression (A.13). 

(A.18) 

Farouki and Neff [102] present a brief proof for this proposition which consists of 

verifying that the results satisfy the boundary conditions after some algebraic manipula- 

tions. The two solutions from (A.14) and the two solutions from (A.15) combine to give 

137 



the four possible values for a and lead to four different curves that satisfy the boundary 

conditions. 

We can also find expressions for the curve length and curvature given as 

Z=lk| |a|>|bP - |a|'Re(b) - |b|»Re(.) + H2 + ^(»W>) + Na + 1 (A.19) 

and 

«w = 5# (A.20) 

where 

r   =   k(*-a)2(i-b)2 

r   =   2k(*-a)(*-b)(2*-a-b). 

(A.21) 

(A.22) 

Note that | • | is the absolute value and • is the complex conjugate of a complex number. 

The bending energy of the curve is given by 

E = / K2(s)ds. (A.23) 

A detailed expression for the total bending energy in terms of the parameters a, b, and 

k is given by Farouki [103, p. 234-235] and is not repeated here. To select a single curve 

from the four available, we will choose the PH curve with the minimum total bending 

energy as the candidate curve for the path planning process. Farouki and Neff [102] 

propose using the curve with the smallest absolute rotation index given by 

R. abs 
1     f\    I     /   \K\ ds (A.24) 

as an alternative criterion to bending energy. The two criteria will often give the same 

results. The bending energy criterion is more appropriate for the path planning problem 

because it will avoid regions of high curvature.   The rotation index criterion avoids 
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Solutions that loop, but allows higher curvatures. We consider making a low curvature 

loop a more acceptable path than one with less overall turning, but with regions of higher 

curvature. 

Bruyninckx and Reynaerts [104] present a more general performance index given by 

/ K2(s)ds + 7 / ds (A.25) 
Jo Jo 

where 7 is a weighting factor between bending energy and arc length. We have all of the 

tools in place to calculate this performance index, but did not use it at this time. 

This section has described how to compute the Pythagorean hodograph curves that 

solve the Hermite interpolation problem using a complex polynomial representation. We 

also explained how to use the total bending energy as a selection criterion to pick an 

appropriate curve for path planning from the four available solutions. The next section 

will illustrate the approach with a few simple examples. 

A.6    Example Pythagorean Hodograph Curves 

We used Mathematica to calculate the solution to the Hermite interpolation problem 

for several examples. Bruyninckx and Reynaerts used MATLAB to generate the examples 

shown in [104] and generously made their code available to us. We implemented their 

MATLAB code and made minor improvements in it to replicate some of the results in [104]. 

The MATLAB code does not explicitly solve for the quintic polynomials for x(t) and y(t) 

and instead relies on numerical evaluation to generate the curves. We corrected this 

deficiency by implementing the algorithm in Mathematica and using the software to 

further improve the results. All of the simulations presented here were completed using 

Mathematica and the results verified with the original MATLAB code. 
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Figure A.l is replica of Figure 3 in [104] and shows the four PH curves satisfying 

the conditions r(0) = {0,0}, r(l) = {1,1}, r'(0) = 3 x {1,0}, and r'(l) = 2 x {-1,1}. 

Figure A.2 shows the corresponding curvature profiles for these four curves, and it is fairly 

obvious which one has the lowest bending energy (i.e., the lower-left plot). Figure A.3 

shows the PH curve with the lowest bending energy along with two offset curves located 

a distance d = 0.41 units from the original curve. This offset distance represents the 

maximum value for a smooth offset curve. Choosing a larger offset distance would create 

a boundary curve that crosses over itself because of the shape of the original curve. 

0.8 

0.6 

0.4 

0.2 

Figure A.l Four example Pythagorean hodograph curves. The curves satisfy the bound- 
ary conditions r(0) = {0,0}, r(l) = {1,1}, d0 = 3 x {1,0}, and d1 = 2x {-1,1}. Only 
one curve represents a reasonable candidate path for motion planning. 

We present two more figures that illustrate the types of solutions available with 

Pythagorean hodograph curves. Figure A.4 shows the four PH curves for r(0) = {0,0}, 

r(l) = {0,4}, r'(0) = 3 x {1,0}, and r'(l) = 2 x {1,0}. Figure A.5 shows the four 

PH curves for r(0) = {0,0}, r(l) = {1,1}, r'(0) = 2 x {1,0}, and r'(l) = 2 x {1,0}. 

In all three examples, the curve with the minimum bending energy represents the most 
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reasonable path to use as the starting point for planning the motion of a vehicle. It is 

very easy to identify the appropriate curve and, since it is a polynomial position curve, 

there is no difference between the Pythagorean hodograph curve and the cubic spline for 

the remainder of the motion planning algorithm. 

Kappa 

50000 

40000 

30000 

20000 

10000 

0.2  0.4  0.6  0.8 

Kappa 

-25 
-50 
-75 
-100 
-125 
-150 
-175 

0.2  0.4  0.6\ 0.8/' 1 
\  / 

Kappa 

2 

1.5 

1 /         \ 
0.5 ^r 

Kappa 

0.2  0.4  0.6  0.S 

-20 \     I 
0.4 0.6 "X8 z1 

-40 \        1 
S 

-60 

-80 

100 y 

Figure A.2 Curvature profiles for the four Pythagorean hodograph curves. Notice the 
large variation in the magnitude of the curvatures. The lower left plot corresponds to 
the minimum energy curve. 

Figure A.3 Minimum energy curve with offset boundaries. The energy of this curve is 
3.99 units and the length is 2.01 units. The offset curves are located 0.41 units away 
from the original curve. The maximum curvature for this curve is K = 2.42 and we 
placed the offset curves at a distance equal to the minimum radius of curvature p = 1/K. 

Constructing offset curves at a distance more than pmin causes a distorted offset boundary. 
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Figure A.4 Four example Pythagorean hodograph curves. The curves satisfy the bound- 
ary conditions r(0) = {0,0}, r(l) = {0,4}, d0 = 3 x {1,0}, and d1 = 2x {1,0}. 
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Figure A.5 Four example Pythagorean hodograph curves. The curves satisfy the bound- 
ary conditions r(0) = {0,0}, r(l) = {1,1}, d0 = 2 x {1,0}, and d1 = 2x {1,0}. 
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A. 7    Summary 

This appendix presented two techniques for solving the Hermite interpolation prob- 

lem. The first technique is relatively common and relies on cubic splines to find the so- 

lution. The second approach uses the concept of Pythagorean hodograph curves, which 

have some attractive properties for motion planning problems. We also illustrated three 

examples of the Pythagorean hodograph curve approach. 
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